|
БІБЛІОГРАФІЯ
- 1. VanderWaal, K., & Deen, J. (2018). Global trends in infectious diseases
of swine. Proceedings o f the National Academy o f Sciences o f the United States o f
America, 115(45), 11495-11500. doi: 10.1073/pnas.1806068115
- 2. Kappes, A., Tozooneyi, T., Shakil, G., Railey, A. F., McIntyre, K. M.,
Mayberry, D. E., Rushton, J., Pendell, D. L., & Marsh, T. L. (2023). Livestock health and
disease economics: a scoping review of selected literature. Frontiers in Veterinary
Science, 10, 1168649. doi: 10.3389/fvets.2023.1168649
- 3. Pecora, N., & Milner, D. A., Jr. (2018). New Technologies for the
Diagnosis of Infection. Diagnostic Pathology o f Infectious Disease, 104-117.
doi: 10.1016/B978-0-323-44585-6.00006-0
- 4. Gerace, E., Mancuso, G., Midiri, A., Poidomani, S., Zummo, S., &
Biondo, C. (2022). Recent Advances in the Use of Molecular Methods for the Diagnosis
of Bacterial Infections. Pathogens (Basel, Switzerland), 11(6), 663.
doi: 10.3390/pathogens11060663
- 5. Ahmad, S., Lohiya, S., Taksande, A., Meshram, R. J., Varma, A., &
Vagha, K. (2024). A Comprehensive Review of Innovative Paradigms in Microbial
Detection and Antimicrobial Resistance: Beyond Traditional Cultural Methods. Cureus,
16(6), e61476. doi: 10.7759/cureus.61476
- 6. Food and Agriculture Organization of the United Nations. 2023. Meat
[Internet]https://www.fao.org/markets-and-trade/commodities/meat/en/ (date of access:
5.09.2024).
- 7. Kim, S. W., Gormley, A., Jang, K. B., & Duarte, M. E. (2024). Invited
Review - Current status of global pig production: an overview and research trends. Animal
bioscience, 37(4), 719-729. doi: 10.5713/ab.23.0367
- 8. Mateos, G. G., Corrales, N. L., Talegon, G., & Aguirre, L. (2024). - Invited
Review - Pig meat production in the European Union-27: current status, challenges, and
future trends. Animal bioscience, 37(4), 755-774. https://doi.org/10.5713/ab.23.0496.
- 9. Production - Pork, 2024. Available online:
https://fas.usda.gov/data/production/commodity/0113000 (date of access: 5.09.2024).
- 10. Miller, V., Reedy, J., Cudhea, F., Zhang, J., Shi, P., Erndt-Marino, J.,
Coates, J., Micha, R., Webb, P., Mozaffarian, D., & Global Dietary Database (2022).
Global, regional, and national consumption of animal-source foods between 1990 and
2018: findings from the Global Dietary Database. The Lancet. Planetary health, 6(3),
e243-e256. doi: 10.1016/S2542-5196(21)00352-1
- 11. Sieminski, G., Skalecki, P., Florek, M., Domaradzki, P., Poleszak, E.,
Dmoch, M., Ryszkowska-Siwko, M., K^dzierska-Matysek, M., Teter, A.,
Kowalczyk, M., & Kaliniak-Dziura, A. (2023). Meat Nutritional Value of Pulawska
Fattening Pigs, Polish Large White x Pulawska Crossbreeds and Hybrids of DanBred.
Animals: an open access journal from MDPI, 13(15), 2408. doi: 10.3390/ani13152408
- 12. Rowland, R. R., Lunney, J., & Dekkers, J. (2012). Control of porcine
reproductive and respiratory syndrome (PRRS) through genetic improvements in disease
resistance and tolerance. Frontiers in genetics, 3, 260. doi: 10.3389/fgene.2012.00260
- 13. Statistics Poland Statistical Yearbook of Agriculture. Warsaw 2022;
Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/rocznikistatystyczne/rocznik-statystyczny-rolnictwa-2022,6,16.html (date of access: 5.09.2024).
- 14. Olszanska, A., Kowalska, A. S., Szymanska, J., Paskudzka, K., &
Soukal, I. (2024). Trends in the livestock and pork market in Poland with regard to the
environmental impact of this production direction. Economics and Environment, 88(1),
625. doi: 10.34659/eis.2024.88.1.625
- 15. St^pien, S., & Polcyn, J. (2016). Pig Meat Market In Selected Eu Countries
Under The conditions of Economic Integration: A Comparative analysis of Old and New
Member States. Annales Universitatis Apulensis Series Oeconomica, 2(18), 172-178.
doi: 10.29302/oeconomica.2016.18.2.14
- 16. Popescu, A. (2009). Evolution of World Pork Market. Scientific Papers
Series D, Vol. LII, Animal Science (Lucrari stiintifice, Seria D, Vol LI, Zootehnie), 263
269.
- 17. Galli, F., Friker, B., Bearth, A., & Durr, S. (2022). Direct and indirect
pathways for the spread of African swine fever and other porcine infectious diseases: an
application of the mental models approach. Transboundary and emerging diseases, 69(5),
e2602-e2616. doi: 10.1111/tbed.14605
- 18. Cochran, H. J., Bosco-Lauth, A. M., Garry, F. B., Roman-Muniz, I. N., &
Martin, J. N. (2023). African Swine Fever: A Review of Current Disease Management
Strategies and Risks Associated with Exhibition Swine in the United States. Animals: an
open access journal from MDPI, 13(23), 3713. doi: 10.3390/ani13233713
- 19. Makovska, I., Chantziaras, I., Caekebeke, N., Dhaka, P., & Dewulf, J.
(2024). Assessment of Cleaning and Disinfection Practices on Pig Farms across Ten
European Countries. Animals: an open access journal from MDPI, 14(4), 593. doi:
10.3390/ani14040593
- 20. Scollo, A., Perrucci, A., Stella, M. C., Ferrari, P., Robino, P., & Nebbia, P.
(2023). Biosecurity and Hygiene Procedures in Pig Farms: Effects of a Tailor-Made
Approach as Monitored by Environmental Samples. Animals: an open access journal
from MDPI, 13(7), 1262. doi: 10.3390/ani13071262
- 21. Alarcon, L. V., Allepuz, A., & Mateu, E. (2021). Biosecurity in pig farms:
a review. Porcine health management, 7(1), 5. doi: 10.1186/s40813-020-00181-z
- 22. Memarzadeh F. (2021). A Review of Recent Evidence for Utilizing
Ultraviolet Irradiation Technology to Disinfect Both Indoor Air and Surfaces. Applied
biosafety: journal of the American Biological Safety Association, 26(1), 52-56.
doi: 10.1089/apb.20.0056
- 23. EFSA Panel on Animal Health and Welfare (AHAW), Nielsen, S. S.,
Alvarez, J., Bicout, D. J., Calistri, P., Canali, E., Drewe, J. A., Garin-Bastuji, B., Gonzales
Rojas, J. L., Herskin, M., Miranda Chueca, M. A., Michel, V., Padalino, B., Pasquali, P.,
Roberts, H. C., Sihvonen, L. H., Spoolder, H., Stahl, K., Velarde, A., Viltrop, A., ...
Gortazar Schmidt, C. (2021). African swine fever and outdoor farming of pigs. EFSA
journal. European Food Safety Authority, 19(6), e06639. doi: 10.2903/j.efsa.2021.6639
- 24. Levis, D. G., & Baker, R. B. (2011). Biosecurity of pigs and farm security:
University of Nebraska-Lincoln Extension.
- 25. Jurado, C., Martmez-Aviles, M., De La Torre, A., Stukelj, M., de Carvalho
Ferreira, H. C., Cerioli, M., Sanchez-Vizcamo, J. M., & Bellini, S. (2018). Relevant
Measures to Prevent the Spread of African Swine Fever in the European Union Domestic
Pig Sector. Frontiers in veterinary science, 5, 77. doi: 10.3389/fvets.2018.00077
- 26. Msimang, V., Rostal, M. K., Cordel, C., Machalaba, C., Tempia, S.,
Bagge, W., Burt, F. J., Karesh, W. B., Paweska, J. T., & Thompson, P. N. (2022). Factors
affecting the use of biosecurity measures for the protection of ruminant livestock and
farm workers against infectious diseases in central South Africa. Transboundary and
emerging diseases, 69(5), e1899-e1912. doi: 10.1111/tbed.14525
- 27. Liu, S., Tao, D., Liao, Y., Yang, Y., Sun, S., Zhao, Y., Yang, P., Tang, Y.,
Chen, B., Liu, Y., Xie, S., & Tang, Z. (2021). Highly Sensitive CRISPR/Cas12a-Based
Fluorescence Detection of Porcine Reproductive and Respiratory Syndrome Virus. ACS
synthetic biology, 10(10), 2499-2507. doi: 10.1021/acssynbio.1c00103
- 28. Augustyniak, A., & Pomorska-Mol, M. (2023). An Update in Knowledge
of Pigs as the Source of Zoonotic Pathogens. Animals: an open access J. from MDPI,
13(20), 3281. doi: 10.3390/ani13203281
- 29. Lunney, J. K., Benfield, D. A., & Rowland, R. R. (2010). Porcine
reproductive and respiratory syndrome virus: an update on an emerging and re-emerging
viral disease of swine. Virus research, 154(1-2), 1-6. doi: 10.1016/j.virusres.2010.10.009
- 30. Butler, J. E., Lager, K. M., Golde, W., Faaberg, K. S., Sinkora, M.,
Loving, C., & Zhang, Y. I. (2014). Porcine reproductive and respiratory syndrome
(PRRS): an immune dysregulatory pandemic. Immunologic research, 59(1-3), 81-108.
doi: 10.1007/s12026-014-8549-5
- 31. Done, S. H., & Paton, D. J. (1995). Porcine reproductive and respiratory
syndrome : clinical disease, pathology and immunosuppression. The Veterinary record,
136(2), 32-35. doi: 10.1136/vr.136.2.32
- 32. Cho, J. G., & Dee, S. A. (2006). Porcine reproductive and respiratory
syndrome virus. Theriogenology, 66(3), 655-662.
doi: 10.1016/j .theriogenology.2006.04.024
- 33. Sun, Q., Xu, H., An, T., Cai, X., Tian, Z., & Zhang, H. (2023). Recent
Progress in Studies of Porcine Reproductive and Respiratory Syndrome Virus 1 in China.
Viruses, 15(7), 1528. doi: 10.3390/v15071528
- 34. Matthews, S. G., Miller, A. L., Clapp, J., Plotz, T., & Kyriazakis, I. (2016).
Early detection of health and welfare compromises through automated detection of
behavioural changes in pigs. Veterinary journal (London, England: 1997), 217, 43-51.
doi: 10.1016/j.tvjl.2016.09.005
- 35. Moennig, V., Floegel-Niesmann, G., & Greiser-Wilke, I. (2003). Clinical
signs and epidemiology of classical swine fever: a review of new knowledge. Veterinary
journal (London, England: 1997), 165(1), 11-20. doi: 10.1016/s1090-0233(02)00112-0
- 36. Brockmeier S. L., Halbur P. G., Thacker E. L. (2002). Porcine Respiratory
Disease Complex. In: Brogden KA, Guthmiller JM, editors. Polymicrobial Diseases.
Washington (DC): ASM Press; Chapter 13. Available from:
https://www.ncbi.nlm.nih.gov/books/NBK2481/ (date of access: 5.09.2024).
- 37. Wagner, J., Kneucker, A., Liebler-Tenorio, E., Fachinger, V., Glaser, M.,
Pesch, S., Murtaugh, M. P., & Reinhold, P. (2011). Respiratory function and pulmonary
lesions in pigs infected with porcine reproductive and respiratory syndrome virus.
Veterinary journal (London, England: 1997), 187(3), 310-319.
doi: 10.1016/j.tvjl.2009.12.022
- 38. Robbins, R. C., Almond, G., & Byers, E. (2014). Swine Diseases and
Disorders. Encyclopedia o f Agriculture and F ood Systems, 261-276. doi: 10.1016/B978-
0-444-52512-3.00134-0
- 39. Saif L. J. (1999). Enteric viral infections of pigs and strategies for
induction of mucosal immunity. Advances in veterinary medicine, 41, 429-446.
doi: 10.1016/s0065-3519(99)80033 -0
- 40. Liu, Q., & Wang, H. Y. (2021). Porcine enteric coronaviruses: an updated
overview of the pathogenesis, prevalence, and diagnosis. Veterinary research
communications, 45(2-3), 75-86. doi: 10.1007/s11259-021-09808-0
- 41. Njau, E. P., Machuka, E. M., Cleaveland, S., Shirima, G. M.,
Kusiluka, L. J., Okoth, E. A., & Pelle, R. (2021). African Swine Fever Virus (ASFV):
Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa. Viruses, 13(11),
2285. doi: 10.3390/v13112285
- 42. Caliendo, A. M., Gilbert, D. N., Ginocchio, C. C., Hanson, K. E., May, L.,
Quinn, T. C., Tenover, F. C., Alland, D., Blaschke, A. J., Bonomo, R. A., Carroll, K. C.,
Ferraro, M. J., Hirschhorn, L. R., Joseph, W. P., Karchmer, T., MacIntyre, A. T.,
Reller, L. B., Jackson, A. F., & Infectious Diseases Society of America (IDSA) (2013).
Better tests, better care: improved diagnostics for infectious diseases. Clinical infectious
diseases: an official publication o f the Infectious Diseases Society o f America, 57 Suppl.
3(Suppl. 3), S139-S170. doi: 10.1093/cid/cit578
- 43. Yamane N. (1998). [Blood culture: gold standard for definitive diagnosis
of bacterial and fungal infections - from the laboratory aspect]. The Japanese journal o f
clinical pathology, 46(9), 887-892.
- 44. Tjandra, K. C., Ram-Mohan, N., Abe, R., Hashemi, M. M., Lee, J. H.,
Chin, S. M., Roshardt, M. A., Liao, J. C., Wong, P. K., & Yang, S. (2022). Diagnosis of
Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid
Identification and Antibiotic Susceptibility Testing. Antibiotics (Basel, Switzerland),
11(4), 511. doi: 10.3390/antibiotics11040511
- 45. Yang, S., & Rothman, R. E. (2004). PCR-based diagnostics for infectious
diseases: uses, limitations, and future applications in acute-care settings. The Lancet.
Infectious diseases, 4(6), 337-348. https://doi.org/10.1016/S1473-3099(04)01044-8.
- 46. Bursle, E., & Robson, J. (2016). Non-culture methods for detecting
infection. Australianprescriber, 39(5), 171-175. doi: 10.18773/austprescr.2016.059
- 47. Yu, X., Zhu, X., Chen, X., Li, D., Xu, Q., Yao, L., Sun, Q., Ghonaim, A.
H., Ku, X., Fan, S., Yang, H., & He, Q. (2021). Establishment of a Blocking ELISA
Detection Method for Against African Swine Fever Virus p30 Antibody. Frontiers in
Veterinary Sci., 8, 781373. doi: 10.3389/fvets.2021.781373
- 48. Zhou, L., Song, J., Wang, M., Sun, Z., Sun, J., Tian, P., Zhuang, G., Zhang,
A., Wu, Y., & Zhang, G. (2023). Establishment of a Dual-Antigen Indirect ELISA Based
on p30 and pB602L to Detect Antibodies against African Swine Fever Virus. Viruses,
15(9), 1845. doi: 10.3390/v15091845
- 49. Gao, Z., Shao, J. J., Zhang, G. L., Ge, S. D., Chang, Y. Y., Xiao, L., &
Chang, H. Y. (2021). Development of an indirect ELISA to specifically detect antibodies
against African swine fever virus: bioinformatics approaches. Virology Journal, 18(1),
97. doi: 10.1186/s12985-021-01568-2
- 50. Gerber, P. F., Lelli, D., Zhang, J., Strandbygaard, B., Moreno, A.,
Lavazza, A., Perulli, S., B0tner, A., Comtet, L., Roche, M., Pourquier, P., Wang, C., &
Opriessnig, T. (2016). Diagnostic evaluation of assays for detection of antibodies against
porcine epidemic diarrhea virus (PEDV) in pigs exposed to different PEDV strains.
Preventive veterinary medicine, 135, 87-94. doi: 10.1016/j.prevetmed.2016.11.005
- 51. Hussaini, H. M., Seo, B., & Rich, A. M. (2023). Immunohistochemistry
and Immunofluorescence. Methods in molecular biology (Clifton, N.J.), 2588, 439-450.
doi: 10.1007/978-1 -0716-2780-8_26
- 52. Im, K., Mareninov, S., Diaz, M. F. P., & Yong, W. H. (2019). An
Introduction to Performing Immunofluorescence Staining. Methods in molecular biology
(Clifton, N.J.), 1897, 299-311. doi: 10.1007/978-1-4939-8935-5_26
- 53. Zhou, F., Sun, H., & Wang, Y. (2014). Porcine bocavirus: achievements
in the past five years. Viruses, 6(12), 4946-4960. doi: 10.3390/v6124946
- 54. Vijayakumar, T., Divya, B., Vasanthi, V., Narayan, M., Kumar, A. R., &
Krishnan, R. (2023). Diagnostic Utility of Gram Stain for Oral Smears - A Review. J. o f
M icroscopy and Ultrastructure, 11(3), 130-134. doi: 10.4103/jmau.jmau_108_22
- 55. Zurac, S., Mogodici, C., Poncu, T., Trascau, M., Popp, C., Nichita, L.,
Cioplea, M., Ceachi, B., Sticlaru, L., Cioroianu, A., Busca, M., Stefan, O., Tudor, I.,
Voicu, A., Stanescu, D., Mustatea, P., Dumitru, C., & Bastian, A. (2022). A New
Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in
Ziehl-Neelsen Stain on Tissue. Diagnostics (Basel, Switzerland), 12(6), 1484. doi:
10.3390/diagnostics12061484
- 56. Dittmar, M., Hoelzle, L. E., Hoelzle, K., Sydler, T., Corboz, L.,
Miserez, R., & Wittenbrink, M. M. (2003). Diagnosis of porcine proliferative
enteropathy: detection of Lawsonia intracellularis by pathological examinations,
polymerase chain reaction and cell culture inoculation. Journal o f veterinary medicine.
B, Infectious diseases and veterinary public health, 50(7), 332-338. doi: 10.1046/j .1439-
0450.2003.00691.x
- 57. Schwartz W. L. (1982). Laboratory diagnosis of swine diseases.
The Veterinary clinics o f North America. Large animal practice, 4(2), 201-223. doi:
10.1016/s0196-9846( 17)30103 -9
- 58. Rodriguez-Bertos, A., Cadenas-Fernandez, E., Rebollada-Merino, A.,
Porras-Gonzalez, N., Mayoral-Alegre, F. J., Barreno, L., Kosowska, A., Tome-Sanchez,
I., Barasona, J. A., & Sanchez-Vizcamo, J. M. (2020). Clinical Course and Gross
Pathological Findings in Wild Boar Infected with a Highly Virulent Strain of African
Swine Fever Virus Genotype II. Pathogens (Basel, Switzerland), 9(9), 688.
doi: 10.3390/pathogens9090688
- 59. Stringer, O. W., Li, Y., Bosse, J. T., & Langford, P. R. (2022). JMM
Profile: Actinobacillus pleuropneumoniae: a major cause of lung disease in pigs but
difficult to control and eradicate. J. o f M edical M icrobiology, 71(3), 001483. doi:
10.1099/jmm.0.001483
- 60. Malik, Y. S., Bhat, S., Kumar, O. R. V., Yadav, A. K., Sircar, S.,
Ansari, M. I., Sarma, D. K., Rajkhowa, T. K., Ghosh, S., & Dhama, K. (2020). Classical
Swine Fever Virus Biology, Clinicopathology, Diagnosis, Vaccines and a Meta-Analysis
of Prevalence: A Review from the Indian Perspective. Pathogens (Basel, Switzerland),
9(6), 500. doi: 10.3390/pathogens9060500
- 61. Izzati, U. Z., Hoa, N. T., Lan, N. T., Diep, N. V., Fuke, N., Hirai, T., &
Yamaguchi, R. (2021). Pathology of the outbreak of subgenotype 2.5 classical swine
fever virus in northern Vietnam. Veterinary medicine and science, 7(1), 164-174.
doi: 10.1002/vms3.339
- 62. Gupta, E., Bhalla, P., Khurana, N., & Singh, T. (2009). Histopathology for
the diagnosis of infectious diseases. Indian J. o f M edical M icrobiology, 27(2), 100-106.
doi: 10.4103/0255-0857.49423
- 63. Sabino, R., & Wiederhold, N. (2022). Diagnosis from Tissue: Histology
and Identification. Journal o f fungi (Basel, Switzerland), 8(5), 505.
doi: 10.3390/jof8050505
- 64. Mackay I. M. (2004). Real-time PCR in the microbiology laboratory.
Clinical microbiology and infection: the official publication o f the European Society o f
Clinical M icrobiology and Infectious Diseases, 10(3), 190-212. doi: 10.1111/j.1198-
743x.2004.00722.x
- 65. Goto, Y., Fukunari, K., Tada, S., Ichimura, S., Chiba, Y., & Suzuki, T.
(2023). A multiplex real-time RT-PCR system to simultaneously diagnose 16 pathogens
associated with swine respiratory disease. J. o f Applied M icrobiology, 134(11), lxad263.
doi: 10.1093/jambio/lxad263
- 66. Dias, N. L., Fonseca Junior, A. A., Oliveira, A. M., Sales, E. B.,
Alves, B. R., Dorella, F. A., & Camargos, M. F. (2014). Validation of a real time PCR
for classical Swine Fever diagnosis. Veterinary Medicine International, 2014, 171235.
doi: 10.1155/2014/171235
- 67. Fornyos, K., Szabo, I., Lebhardt, K., & Balint, A. (2022). Development of
a farm-specific real-time quantitative RT-PCR assay for the detection and discrimination
of wild-type porcine reproductive respiratory syndrome virus and the vaccine strain in a
farm under eradication. Acta Veterinaria Hungarica, Sep. 1.
doi: 10.1556/004.2022.00020
- 68. Shin, G. E., Park, J. Y., Lee, K. K., Ko, M. K., Ku, B. K., Park, C. K., &
Jeoung, H. Y. (2022). Genetic diversity of porcine reproductive and respiratory syndrome
virus and evaluation of three one-step real-time RT-PCR assays in Korea.
BMC veterinary research, 18(1), 327. doi: 10.1186/s12917-022-03407-0
- 69. Zheng, L. L., Chai, L. Y., Tian, R. B., Zhao, Y., Chen, H. Y., &
Wang, Z. Y. (2020). Simultaneous detection of porcine reproductive and respiratory
syndrome virus and porcine circovirus 3 by SYBR Green І-based duplex real-time PCR.
Molecular and Cellular Probes, 49, 101474. doi: 10.1016/j.mcp.2019.101474
- 70. Tu, T., Pang, M., Jiang, D., Zhou, Y., Wu, X., Yao, X., Luo, Y., Yang, Z.,
Ren, M., Lu, A., Zhang, G., Yu, Y., & Wang, Y. (2023). Development of a Real-Time
TaqMan RT-PCR Assay for the Detection of NADC34-like Porcine Reproductive and
Respiratory Syndrome Virus. Vet. Sci., 10(4), 279. doi: 10.3390/vetsci10040279
- 71. Steiger, Y., Ackermann, M., Mettraux, C., & Kihm, U. (1992). Rapid and
biologically safe diagnosis of African swine fever virus infection by using polymerase
chain reaction. J. o f Clinical M icrobiology, 30(1), 1-8. doi: 10.1128/jcm.30.1.1-8.1992
- 72. Chae, H., Roh, H. S., Jo, Y. M., Kim, W. G., Chae, J. B., Shin, S. U., &
Kang, J. W. (2023). Development of a one-step reverse transcription-quantitative
polymerase chain reaction assay for the detection of porcine reproductive and respiratory
syndrome virus. PloS one, 18(10), e0293042. doi: 10.1371/journal.pone.0293042
- 73. Elnifro, E. M., Ashshi, A. M., Cooper, R. J., & Klapper, P. E. (2000).
Multiplex PCR: optimization and application in diagnostic virology. Clinical
microbiology reviews, 13(4), 559-570. doi: 10.1128/CMR.13.4.559
- 74. Ogawa, H., Taira, O., Hirai, T., Takeuchi, H., Nagao, A., Ishikawa, Y.,
Tuchiya, K., Nunoya, T., & Ueda, S. (2009). Multiplex PCR and multiplex RT-PCR for
inclusive detection of major swine DNA and RNA viruses in pigs with multiple
infections. J. o f Virological Methods, 160(1-2), 210-214.
doi: 10.1016/j.jviromet.2009.05.010
- 75. Fourour, S., Fablet, C., Tocqueville, V., Dorenlor, V., Eono, F., Eveno, E.,
Kempf, I., & Marois-Crehan, C. (2018). A new multiplex real-time TaqMan® PCR for
quantification of M ycoplasma hyopneumoniae, M. hyorhinis and M. flocculare:
exploratory epidemiological investigations to research mycoplasmal association in
enzootic pneumonia-like lesions in slaughtered pigs. J. o f Applied Microbiology, 125(2),
345-355. doi: 10.1111/jam.13770
- 76. Qin, D. (2019). Next-generation sequencing and its clinical application.
Cancer Biology & Medicine, 16(1), 4-10. doi: 10.20892/j.issn.2095-3941.2018.0055
- 77. Satam, H., Joshi, K., Mangrolia, U., Waghoo, S., Zaidi, G., Rawool, S.,
Thakare, R. P., Banday, S., Mishra, A. K., Das, G., & Malonia, S. K. (2023). NextGeneration Sequencing Technology: Current Trends and Advancements. Biology, 12(7),
997. doi: 10.3390/biology12070997
- 78. Forth, J. H., Calvelage, S., Fischer, M., Hellert, J., Sehl-Ewert, J.,
Roszyk, H., Deutschmann, P., Reichold, A., Lange, M., Thulke, H. H., Sauter-Louis, C.,
Hoper, D., Mandyhra, S., Sapachova, M., Beer, M., & Blome, S. (2023). African swine
fever virus - variants on the rise. Emerging microbes & infections, 12(1), 2146537.
doi: 10.1080/22221751.2022.2146537
- 79. Neyton, L. P. A., Langelier, C. R., & Calfee, C. S. (2023). Metagenomic
Sequencing in the ICU for Precision Diagnosis of Critical Infectious Illnesses. Critical
care (London, England), 27(1), 90. doi: 10.1186/s13054-023-04365-1
- 80. Temmam, S., Davoust, B., Berenger, J. M., Raoult, D., & Desnues, C.
(2014). Viral metagenomics on animals as a tool for the detection of zoonoses prior to
human infection? Intern. J. o f M olecular Sci., 15(6), 10377-10397.
doi: 10.3390/ijms150610377
- 81. Ramesh, A., Bailey, E. S., Ahyong, V., Langelier, C., Phelps, M., Neff, N.,
Sit, R., Tato, C., DeRisi, J. L., Greer, A. G., & Gray, G. C. (2021). Metagenomic
characterization of swine slurry in a North American swine farm operation. Scientific
Reports, 11(1), 16994. doi: 10.1038/s41598-021-95804-y
- 82. Hansen, S., & Abd El Wahed, A. (2020). Point-Of-Care or Point-Of-Need
Diagnostic Tests: Time to Change Outbreak Investigation and Pathogen Detection.
Tropical Medicine and Infectious Disease, 5(4), 151. doi: 10.3390/tropicalmed5040151
- 83. Wang, C., Liu, M., Wang, Z., Li, S., Deng, Y., & He, N. (2021). Point-ofcare diagnostics for infectious diseases: from methods to devices. Nano today, 37,
101092. doi: 10.1016/j.nantod.2021.101092
- 84. Alseed, M. M., Syed, H., Onbasli, M. C., Yetisen, A. K., & Tasoglu, S.
(2021). Design and Adoption of Low-Cost Point-of-Care Diagnostic Devices: Syrian
Case. Micromachines, 12(8), 882. doi: 10.3390/mi12080882
85. Bienek, D. R., & Charlton, D. G. (2012). The effect of simulated field
storage conditions on the accuracy of rapid user-friendly blood pathogen detection kits.
M ilitary M ed., 177(5), 583-588. doi: 10.7205/milmed-d-11-00420
86. Nafea, A. M., Wang, Y., Wang, D., Salama, A. M., Aziz, M. A., Xu, S., &
Tong, Y. (2024). Application of next-generation sequencing to identify different
pathogens. Frontiers in M icrobiology, 14, 1329330. doi: 10.3389/fmicb.2023.1329330
87. Chu, H., Liu, C., Liu, J., Yang, J., Li, Y., & Zhang, X. (2021). Recent
advances and challenges of biosensing in point-of-care molecular diagnosis. Sensors and
actuators. B, Chemical, 348, 130708. doi: 10.1016/j.snb.2021.130708
88. Liu, M., & Wen, Y. (2024). Point-of-care testing for early-stage liver
cancer diagnosis and personalized medicine: Biomarkers, current technologies and
perspectives. Heliyon, 10(19), e38444. doi: 10.1016/j.heliyon.2024.e38444
- 89. Domrazek, K., & Jurka, P. (2024). Application of Next-Generation
Sequencing (NGS) Techniques for Selected Companion Animals. Animals : an open
access j. from MDPI, 14(11), 1578. doi: 10.3390/ani14111578
- 90. Van Borm, S., Belak, S., Freimanis, G., Fusaro, A., Granberg, F.,
Hoper, D., King, D. P., Monne, I., Orton, R., & Rosseel, T. (2015). Next-generation
sequencing in veterinary medicine: how can the massive amount of information arising
from high-throughput technologies improve diagnosis, control, and management of
infectious diseases? M ethods in molecular biology (Clifton, N. J.), 1247, 415-436.
doi: 10.1007/978-1-4939-2004-4_30
- 91. Rajkhowa, S., Sonowal, J., Pegu, S. R., Sanger, G. S., Deb, R., Das, P. J.,
Doley, J., Paul, S., & Gupta, V. K. (2024). Natural co-infection of pigs with African swine
fever virus and porcine reproductive and respiratory syndrome virus in India. Brazilian
J. o f M icrobiology: [publication o f the Brazilian Society fo r M icrobiology], 55(1), 1017
1022. doi: 10.1007/s42770-023-01203-y
- 92. Kamboj, A., Dumka, S., Saxena, M. K., Singh, Y., Kaur, B. P., da
Silva, S. J. R., & Kumar, S. (2024). A Comprehensive Review of Our Understanding and
Challenges of Viral Vaccines against Swine Pathogens. Viruses, 16(6), 833.
doi: 10.3390/v16060833
- 93. Elnagar, A., Blome, S., Beer, M., & Hoffmann, B. (2022). Point-of-Care
Testing for Sensitive Detection of the African Swine Fever Virus Genome. Viruses,
14(12), 2827. doi: 10.3390/v14122827
- 94. Li, Z., Chen, W., Qiu, Z., Li, Y., Fan, J., Wu, K., Li, X., Zhao, M., Ding,
H., Fan, S., & Chen, J. (2022). African Swine Fever Virus: A Review. Life (Basel,
Switzerland), 12(8), 1255. doi: 10.3390/life12081255
- 95. Done, S. H., Paton, D. J., & White, M. E. (1996). Porcine reproductive and
respiratory syndrome (PRRS): a review, with emphasis on pathological, virological and
diagnostic aspects. The British Vet. J., 152(2), 153-174. doi: 10.1016/s0007-
1935(96)80071-6
- 96. Pan, J., Zeng, M., Zhao, M., & Huang, L. (2023). Research Progress on
the detection methods of porcine reproductive and respiratory syndrome virus. Frontiers
in M icrobiology, 14, 1097905. doi: 10.3389/fmicb.2023.1097905
- 97. Fu, X., Wang, Q., Ma, B., Zhang, B., Sun, K., Yu, X., Ye, Z., & Zhang,
M. (2023). Advances in Detection Techniques for the H5N1 Avian Influenza Virus.
International J. o f M olecular Sci., 24(24), 17157. doi: 10.3390/ijms242417157
- 98. Stringer, O. W., Li, Y., Bosse, J. T., Forrest, M. S., Hernandez-Garcia, J.,
Tucker, A. W., Nunes, T., Costa, F., Mortensen, P., Velazquez, E., Penny, P., RodriguezManzano, J., Georgiou, P., & Langford, P. R. (2022). Rapid Detection of Actinobacillus
pleuropneumoniae From Clinical Samples Using Recombinase Polymerase
Amplification. Frontiers in Vet. Sci., 9, 805382. doi: 10.3389/fvets.2022.805382
- 99. Cuccato, M., Divari, S., Ciaramita, S., Sereno, A., Campelli, D.,
Biolatti, P. G., Biolatti, B., Meliota, F., Bollo, E., & Cannizzo, F. T. (2024).
Actinobacillus pleuropneumoniae Serotypes by Multiplex PCR Identification and
Evaluation of Lung Lesions in Pigs from Piedmont (Italy) Farms. Animals: an open
access j. from MDPI, 14(15), 2255. doi: 10.3390/ani14152255
- 100. Caron, J., Ouardani, M., & Dea, S. (2000). Diagnosis and differentiation
of Mycoplasma hyopneumoniae and Mycoplasma hyorhinis infections in pigs by PCR
amplification of the p36 and p46 genes. J. o f Clinical M icrobiology, 38(4), 1390-1396.
doi: 10.1128/JCM.38.4.1390-1396.2000
- 101. Sibila, M., Pieters, M., Molitor, T., Maes, D., Haesebrouck, F., &
Segales, J. (2009). Current perspectives on the diagnosis and epidemiology of
M ycoplasma hyopneumoniae infection. Veterinary Journal (London, England: 1997),
181(3), 221-231. doi: 10.1016/j.tvjl.2008.02.020
- 102. Farzan, A., Friendship, R. M., & Dewey, C. E. (2007). Evaluation of
enzyme-linked immunosorbent assay (ELISA) tests and culture for determining
Salmonella status of a pig herd. Epidemiology and infection, 135(2), 238-244. doi:
10.1017/S0950268806006868
-
103. Soliani, L., Rugna, G., Prosperi, A., Chiapponi, C., & Luppi, A. (2023).
Salmonella Infection in Pigs: Disease, Prevalence, and a Link between Swine and Human
Health. Pathogens (Basel, Switzerland), 12(10), 1267. doi: 10.3390/pathogens12101267
- '104. Kochanowski, M., Karamon, J., D^browska, J., Dors, A., CzyzewskaDors, E., & Cencek, T. (2017). Occurrence of Intestinal Parasites in Pigs in Poland - the
Influence of Factors Related to the Production System. J o f Vet. Research, 61(4), 459
466. doi: 10.1515/jvetres-2017-0053
- 105. Tassis, P., Symeonidou, I., Gelasakis, A. I., Kargaridis, M., Aretis, G.,
Arsenopoulos, K. V., Tzika, E., & Papadopoulos, E. (2022). Serological Assessment of
Ascaris suum Exposure in Greek Pig Farms and Associated Risk Factors Including
Lawsonia intracellularis. Pathogens (Basel, Switzerland), 11(9), 959. doi:
10.3390/pathogens11090959
- 106. Baie§, M. H., Boros, Z., Gherman, C. M., Spinu, M., Mathe, A.,
Pataky, S., Lefkaditis, M., & Cozma, V. (2022). Prevalence of Swine Gastrointestinal
Parasites in Two Free-Range Farms from Nord-West Region of Romania. Pathogens
(Basel, Switzerland), 11(9), 954. doi: 10.3390/pathogens11090954
- 107. Joachim, A., Winkler, C., Ruczizka, U., Ladinig, A., Koch, M., Tichy, A.,
& Schwarz, L. (2021). Comparison of different detection methods for Ascaris suum
infection on Austrian swine farms. Porcine health management, 7(1), 57. doi:
10.1186/s40813-021 -00236-9
- 108. Hawash, M. B., Betson, M., Al-Jubury, A., Ketzis, J., LeeWillingham, A.,
Bertelsen, M. F., Cooper, P. J., Littlewood, D. T., Zhu, X. Q., & Nejsum, P. (2016).
Whipworms in humans and pigs: origins and demography. Parasites & Vectors, 9, 37.
doi: 10.1186/s13071-016-1325-8
- 109. Bunger, M., Renzhammer, R., Joachim, A., Hinney, B., Brunthaler, R., Al
Hossan, M., Matt, J., Nedorost, N., Weissenbacher-Lang, C., & Schwarz, L. (2022).
Trichurosis on a Conventional Swine Fattening Farm with Extensive Husbandry-A Case
Report. Pathogens (Basel, Switzerland), 11(7), 775. doi: 10.3390/pathogens11070775
- 110. Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic
Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential
Public Health Implications. M olecules (Basel, Switzerland), 23(4), 795. doi:
10.3390/molecules23040795
- 111. Caneschi, A., Bardhi, A., Barbarossa, A., & Zaghini, A. (2023). The Use
of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex
Phenomenon: A Narrative Review. Antibiotics (Basel, Switzerland), 12(3), 487. doi:
10.3390/antibiotics12030487
- 112. Kaprou, G. D., Bergspica, I., Alexa, E. A., Alvarez-Ordonez, A., &
Prieto, M. (2021). Rapid Methods for Antimicrobial Resistance Diagnostics. Antibiotics
(Basel, Switzerland), 10(2), 209. doi: 10.3390/antibiotics10020209
- 113. Wang, H., Jia, C., Li, H., Yin, R., Chen, J., Li, Y., & Yue, M. (2022).
Paving the way for precise diagnostics of antimicrobial resistant bacteria. Frontiers in
molecular biosciences, 9, 976705. doi: 10.3389/fmolb.2022.976705
- 114. Poeta Silva, A. P. S., Magtoto, R. L., Souza Almeida, H. M.,
McDaniel, A., Magtoto, P. D., Derscheid, R. J., Merodio, M. M., Matias Ferreyra, F. S.,
Gatto, I. R. H., Baum, D. H., Clavijo, M. J., Arruda, B. L., Zimmerman, J. J., & GimenezLirola, L. G. (2020). Performance of Commercial M ycoplasma hyopneumoniae Serum
Enzyme-Linked Immunosorbent Assays under Experimental and Field Conditions. J. o f
Clinical M icrobiology, 58(12), e00485-20. doi: 10.1128/JCM.00485-20
- 115. Deeks, J. J., Dinnes, J., Takwoingi, Y., Davenport, C., Spijker, R., TaylorPhillips, S., Adriano, A., Beese, S., Dretzke, J., Ferrante di Ruffano, L., Harris, I. M.,
Price, M. J., Dittrich, S., Emperador, D., Hooft, L., Leeflang, M. M., Van den Bruel, A.,
& Cochrane COVID-19 Diagnostic Test Accuracy Group (2020). Antibody tests for
identification of current and past infection with SARS-CoV-2. The Cochrane database
o f systematic reviews, 6(6), CD013652. doi: 10.1002/14651858.CD013652
- 116. Huang, H. S., Tsai, C. L., Chang, J., Hsu, T. C., Lin, S., & Lee, C. C.
(2018) . Multiplex PCR system for the rapid diagnosis of respiratory virus infection:
systematic review and meta-analysis. Clinical microbiology and infection: the official
publication o f the European Society o f Clinical M icrobiology and Infectious Diseases,
24(10), 1055-1063. doi: 10.1016/j.cmi.2017.11.018
- 117. Hobbs, E. C., Colling, A., Gurung, R. B., & Allen, J. (2021). The potential
of diagnostic point-of-care tests (POCTs) for infectious and zoonotic animal diseases in
developing countries: Technical, regulatory and sociocultural considerations.
Transboundary and Emerging Diseases, 68(4), 1835-1849. doi: 10.1111/tbed.13880
- 118. Kimani, F. W., Mwangi, S. M., Kwasa, B. J., Kusow, A. M., Ngugi, B. K.,
Chen, J., Liu, X., Cademartiri, R., & Thuo, M. M. (2017). Rethinking the Design of LowCost Point-of-Care Diagnostic Devices. Micromachines, 8(11), 317.
doi: 10.3390/mi8110317
- 119. Lopez, W. A., Zimmerman, J. J., Gauger, P. C., Harmon, K. M.,
Bradner, L., Zhang, M., Gimenez-Lirola, L., Ramirez, A., Cano, J. P., & Linhares,
D. C. L. (2020). Practical aspects of PRRSV RNA detection in processing fluids collected
in commercial swine farms. Preventive Vet. Medicine, 180, 105021.
doi: 10.1016/j.prevetmed.2020.105021
- 120. Trevisan, G., Jablonski, E., Angulo, J., Lopez, W. A., & Linhares, D. C. L.
(2019) . Use of processing fluid samples for longitudinal monitoring of PRRS virus in
herds undergoing virus elimination. Porcine Health Management, 5, 18.
doi: 10.1186/s40813-019-0125-x
- 121. Vilalta, C., Sanhueza, J., Alvarez, J., Murray, D., Torremorell, M.,
Corzo, C., & Morrison, R. (2018). Use of processing fluids and serum samples to
characterize porcine reproductive and respiratory syndrome virus dynamics in 3 day-old
pigs. Veterinary microbiology, 225, 149-156. doi: 10.1016/j.vetmic.2018.09.006
- 122. Robert, E., Goonewardene, K., El Kanoa, I., Hochman, O., Nfon, C., &
Ambagala, A. (2024). Oral Fluids for the Early Detection of Classical Swine Fever in
Commercial Level Pig Pens. Viruses, 16(3), 318. doi: 10.3390/v16030318
- 123. Hernandez-Garcia, J., Robben, N., Magnee, D., Eley, T., Dennis, I.,
Kayes, S. M., Thomson, J. R., & Tucker, A. W. (2017). The use of oral fluids to monitor
key pathogens in porcine respiratory disease complex. Porcine Health Management, 3,
7. doi: 10.1186/s40813-017-0055-4
- 124. Callens, M., & De Clercq, K. (1999). Highly sensitive detection of swine
vesicular disease virus based on a single tube RT-PCR system and DIG-ELISA detection.
J. o f VirologicalM ethods, 77(1), 87-99. doi: 10.1016/s0166-0934(98)00140-2
- 125. Henao-Diaz, A., Gimenez-Lirola, L., Baum, D. H., & Zimmerman, J.
(2020) . Guidelines for oral fluid-based surveillance of viral pathogens in swine. Porcine
Health Management, 6, 28. doi: 10.1186/s40813-020-00168-w
- 126. Chen, W., Wang, W., Wang, X., Li, Z., Wu, K., Li, X., Li, Y., Yi, L., Zhao,
M., Ding, H., Fan, S., & Chen, J. (2022). Advances in the differential molecular diagnosis
of vesicular disease pathogens in swine. Frontiers in M icrobiology, 13, 1019876.
doi: 10.3389/fmicb.2022.1019876
- 127. Roberts, N. E., & Almond, G. W. (2003). Infection of growing swine with
porcine reproductive and respiratory syndrome virus and M ycoplasma hyopneumoniae -
effects on growth, serum metabolites, and insulin-like growth factor-I. The Canadian
Veterinary J. = La Revue Veterinaire Canadienne, 44(1), 31-37.
- 128. Kirkden, R. D., Broom, D. M., & Andersen, I. L. (2013). Invited review:
piglet mortality: management solutions. J. o f Animal Sci., 91(7), 3361-3389.
doi: 10.2527/jas.2012-5637
- 129. Erez, M. S., Dogan, І., Kozan, E., & Goksu, A. (2023). A Survey of
Knowledge, Approaches, and Practices Surrounding Parasitic Infections and
Antiparasitic Drug Usage by Veterinarians in Turkiye. Animals: an open access j. from
MDPI, 13(17), 2693. doi: 10.3390/ani13172693
- 130. Turlewicz-Podbielska, H., Wlodarek, J., & Pomorska-Mol, M. (2020).
Noninvasive strategies for surveillance of swine viral diseases: a review. J. o f Vet.
Diagnostic Investigation: official publication o f the American Association o f Veterinary
Laboratory Diagnosticians, Inc, 32(4), 503-512. doi: 10.1177/1040638720936616
- 131. Jia, Y., Sun, W., Su, G., Hua, J., & He, Z. (2022). The Threshold Effect of
Swine Epidemics on the Pig Supply in China. Animals: an open access j. from MDPI,
12(19), 2595. doi: 10.3390/ani12192595
- 132. Chambers, M. A., Graham, S. P., & La Ragione, R. M. (2016). Challenges
in Veterinary Vaccine Development and Immunization. Methods in Molecular Biology
(Clifton, N.J.), 1404, 3-35. doi: 10.1007/978-1-4939-3389-1_1
- 133. Koketsu, Y., Tani, S., & Iida, R. (2017). Factors for improving
reproductive performance of sows and herd productivity in commercial breeding herds.
Porcine Health Management, 3, 1. doi: 10.1186/s40813-016-0049-7
- 134. Hayama, Y., Sawai, K., Yoshinori, M., Yamaguchi, E., Shimizu, Y., &
Yamamoto, T. (2022). Pig farm vaccination against classical swine fever reduces the risk
of transmission from wild boar. Preventive Vet. Medicine, 198, 105554.
doi: 10.1016/j .prevetmed.2021.105554
- 135. Papatsiros, V. G., Papakonstantinou, G. I., Meletis, E., Koutoulis, K.,
Athanasakopoulou, Z., Maragkakis, G., Labronikou, G., Terzidis, I., Kostoulas, P., &
Billinis, C. (2023). Seroprevalence of Swine Influenza A Virus (swIAV) Infections in
Commercial Farrow-to-Finish Pig Farms in Greece. Veterinary Sci., 10(10), 599.
doi: 10.3390/vetsci10100599
- 136. Dhaka, P., Chantziaras, I., Vijay, D., Bedi, J. S., Makovska, I., Biebaut, E.,
& Dewulf, J. (2023). Can Improved Farm Biosecurity Reduce the Need for
Antimicrobials in Food Animals? A Scoping Review. Antibiotics (Basel, Switzerland),
12(5), 893. doi: 10.3390/antibiotics12050893
137. EFSA Panel on Animal Health and Welfare (AHAW), Nielsen, S. S.,
Alvarez, J., Bicout, D. J., Calistri, P., Canali, E., Drewe, J. A., Garin-Bastuji, B., Gonzales
Rojas, J. L., Gortazar Schmidt, C., Herskin, M., Michel, V., Miranda Chueca, M. A.,
Padalino, B., Pasquali, P., Sihvonen, L. H., Spoolder, H., Stahl, K., Velarde, A.,
Viltrop, A., ... Roberts, H. C. (2021). Assessment of the control measures of the category
A diseases of Animal Health Law: Classical Swine Fever. EFSA J. European F ood Safety
Authority, 19(7), e06707. doi: 10.2903/j.efsa.2021.6707
- 138. Grondal, H., Tuominen, K., & Sternberg Lewerin, S. (2023). Perspectives
of on-farm biosecurity and disease prevention among selected pig veterinarians and pig
farmers in Sweden. Vet. Record Open, 10(2), e68. doi: 10.1002/vro2.68
- 139. Bortolozzo, F. P., Zanin, G. P., Ulguim, R. D. R., & Mellagi, A. P. G.
(2023). Managing Reproduction in Hyperprolific Sow Herds. Animals: an open access j.
from MDPI, 13(11), 1842. doi: 10.3390/ani13111842
- 140. Youssef, D. M., Wieland, B., Knight, G. M., Lines, J., & Naylor, N. R.
(2021). The effectiveness of biosecurity interventions in reducing the transmission of
bacteria from livestock to humans at the farm level: A systematic literature review.
Zoonoses and Public Health, 68(6), 549-562. doi: 10.1111/zph.12807
- 141. Libera, K., Konieczny, K., Grabska, J., Szopka, W., Augustyniak, A., &
Pomorska-Mol, M. (2022). Selected Livestock-Associated Zoonoses as a Growing
Challenge for Public Health. Infectious Disease Reports, 14(1), 63-81.
doi: 10.3390/idr14010008
- 142. Benjamin, M., & Yik, S. (2019). Precision Livestock Farming in Swine
Welfare: A Review for Swine Practitioners. Animals: an open access j. from M DPI, 9(4),
133. doi: 10.3390/ani9040133
- 143. Xie, Y., Li, H., Chen, F., Udayakumar, S., Arora, K., Chen, H., Lan, Y.,
Hu, Q., Zhou, X., Guo, X., Xiu, L., & Yin, K. (2022). Clustered Regularly Interspaced
short palindromic repeats-Based Microfluidic System in Infectious Diseases Diagnosis:
Current Status, Challenges, and Perspectives. Advanced science (Weinheim, BadenWurttemberg, Germany), 9(34), e2204172. doi: 10.1002/advs.202204172
- 144. Kostyusheva, A., Brezgin, S., Babin, Y., Vasilyeva, I., Glebe, D.,
Kostyushev, D., & Chulanov, V. (2022). CRISPR-Cas systems for diagnosing infectious
diseases. Methods (San Diego, Calif.), 203, 431-446. doi: 10.1016/j.ymeth.2021.04.007
- 145. Zhang, D., Jiang, S., Xia, N., Zhang, Y., Zhang, J., Liu, A., Zhang, C.,
Chen, N., Meurens, F., Zheng, W., & Zhu, J. (2023). Rapid Visual Detection of African
Swine Fever Virus with a CRISPR/Cas12a Lateral Flow Strip Based on Structural Protein
Gene D117L. Animals: an open access j. from MDPI, 13(23), 3712.
doi: 10.3390/ani13233712
- 146. Zheng, Z., Xu, L., Gao, Y., Dou, H., Zhou, Y., Feng, X., He, X., Tian, Z.,
Song, L., Mo, G., Hu, J., Zhao, H., Wei, H., Church, G. M., & Yang, L. (2024). Testing
multiplexed anti-ASFV CRISPR-Cas9 in reducing African swine fever virus.
M icrobiology Spectrum, 12(7), e0216423. doi: 10.1128/spectrum.02164-23
147. Chang, Y., Deng, Y., Li, T., Wang, J., Wang, T., Tan, F., Li, X., & Tian,
K. (2020). Visual detection of porcine reproductive and respiratory syndrome virus using
CRISPR-Cas13a. Transboundary and Emerging Diseases, 67(2), 564-571. doi:
10.1111/tbed.13368
- 148. Liu, Y., Zhang, X., Qi, W., Yang, Y., Liu, Z., An, T., Wu, X., & Chen, J.
(2021). Prevention and Control Strategies of African Swine Fever and Progress on Pig
Farm Repopulation in China. Viruses, 13(12), 2552. doi: 10.3390/v13122552
- 149. Huang, T., Zhang, R., & Li, J. (2023). CRISPR-Cas-based techniques for
pathogen detection: Retrospect, recent advances, and future perspectives. J. o f Advanced
Research, 50, 69-82. doi: 10.1016/j.jare.2022.10.011
- 150. Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2023). Artificial
intelligence in disease diagnosis: a systematic literature review, synthesizing framework
and future research agenda. J. o f Ambient Intelligence and Humanized Computing, 14(7),
8459-8486. doi: 10.1007/s12652-021-03612-z
- 151. Akinsulie, O. C., Idris, I., Aliyu, V. A., Shahzad, S., Banwo, O. G.,
Ogunleye, S. C., Olorunshola, M., Okedoyin, D. O., Ugwu, C., Oladapo, I. P.,
Gbadegoye, J. O., Akande, Q. A., Babawale, P., Rostami, S., & Soetan, K. O. (2024). The
potential application of artificial intelligence in veterinary clinical practice and
biomedical research. Frontiers in Vet. Sci., 11, 1347550.
doi: 10.3389/fvets.2024.1347550
152. Lepakshi V. A. (2022). Machine Learning and Deep Learning based AI
Tools for Development of Diagnostic Tools. Computational Approaches for Novel
Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection, 399-420.
doi: 10.1016/B978-0-323-91172-6.00011-X
- 153. Shafi, S., & Parwani, A. V. (2023). Artificial intelligence in diagnostic
pathology. Diagnostic Pathology, 18(1), 109. doi: 10.1186/s13000-023-01375-z
- 154. Detmer, S., Gramer, M., Goyal, S., Torremorell, M., & Torrison, J. (2013).
Diagnostics and surveillance for Swine influenza. Current Topics in Microbiology and
Immunology, 370, 85-112. doi: 10.1007/82_2012_220
155. Teles, F., & Fonseca, L. (2015). Nucleic-acid testing, new platforms and
nanotechnology for point-of-decision diagnosis of animal pathogens. Methods in
Molecular Biology (Clifton, N. J..), 1247, 253-283. doi: 10.1007/978-1-4939-2004-4_20
- 156. Fackler, J. L., & McGuire, A. L. (2009). Paving the Way to Personalized
Genomic Medicine: Steps to Successful Implementation. Current Pharmacogenomics
and Personalized Med., 7(2), 125. doi: 10.2174/187569209788653998
- 157. Zhao, S., Zhu, M., & Chen, H. (2012). Immunogenomics for identification
of disease resistance genes in pigs: a review focusing on Gram-negative bacilli. J. o f
Animal Sci. and Biotechnology, 3(1), 34. doi: 10.1186/2049-1891-3-34
- 158. Giles, T. A., Belkhiri, A., Barrow, P. A., & Foster, N. (2017). Molecular
approaches to the diagnosis and monitoring of production diseases in pigs. Research in
Vet. Sci., 114, 266-272. doi: 10.1016/j.rvsc.2017.05.016
- 159. Poland, G. A., Ovsyannikova, I. G., & Jacobson, R. M. (2008).
Personalized vaccines: the emerging field of vaccinomics. Expert opinion on biological
therapy, 8(11), 1659-1667. doi: 10.1517/14712598.8.11.1659
- 160. Alghamdi S. (2021). The role of vaccines in combating antimicrobial
resistance (AMR) bacteria. Saudi J. o f Biological Sci., 28(12), 7505-7510.
doi: 10.1016/j.sjbs.2021.08.054
|