СУЧАСНІ ТЕНДЕНЦІЇ В ДІАГНОСТИЦІ ІНФЕКЦІЙНИХ ХВОРОБ У СВИНЕЙ


Скачати статтю 

УДК: 636.4.09:616-022.7

DOI: 10.37143/2786-7730-2024-4(82)7

БІБЛІОГРАФІЯ за ДСТУ: Jelonek A., Kurasz Ja., Tkaczenko H., Kurhaluk N. Current trends in the diagnosis of infectious diseases in pigs. Свинарство і агропромислове виробництво : міжвідом. темат. наук. зб. / Ін-т свинарства і АПВ НААН. Полтава, 2024. Вип. 4(82). С. 94-123. doi: 10.37143/2786-7730-2024-4(82)7

A. Jelonek,veterinary doctor,
ORCID:https://orcid.org/0009-0002-2451-44122
E-mail:jelonekagnieszka33@gmail.com
Ветеринарна клініка FELIS, Сем'яніце, Польща
J. Kurasz, 5th year medical student,
ORCID:https://orcid.org/0009-0004-3955-1552
E-mail:jakubkurasz30@gmail.com
Медичний факультет Опольського університету, Ополе, Польща
H. M. Tkaczenko, Doc. o f Biological Sci., Prof., Vice-Director o f Institute o f Biology,
ORCID:https//orcid.org/0000-0003-3951-9005
E-mail:: halina.tkaczenko@upsl.edu.pl
Інститут біології Поморського університету в Слупську, Слупськ, Польща
N. M. Kurhaluk, Doc. o f Biological Sci., Prof., Institute o f Biology,
ORCID:https//orcid.org/0000-0002-4669-1092
E-mail:natalia.kurhaluk@upsl.edu.pl
Інститут біології Поморського університету в Слупську, Слупськ, Польща

Анотація

Мета. У цьому огляді висвітлюються останні тенденції в діагностичних технологіях та їх застосуванні для спостереження за захворюваннями, прогнозування спалахів та оптимізації лікування. Результати. Рання та точна діагностика інфекційних захворювань у свиней відіграє вирішальну роль у захисті здоров’я тварин, максимальному підвищенні продуктивності та підтримці економічної стабільності свинарства. Інфекційні захворювання свиней, які можуть мати бактеріальне, вірусне або паразитарне походження, часто призводять до значних економічних втрат через зниження продуктивності, збільшення смертності та витрат, пов ’язаних з лікуванням захворювання. Крім того, інфекційні захворювання свиней викликають серйозне занепокоєння громадської охорони здоров ’я, особливо коли залучені зоонозні збудники, оскільки вони можуть передаватися людям і потенційно призводити до значних проблем зі здоров ’ям. Тому своєчасне виявлення та контроль за цими патогенами є життєво важливими не лише для свинарства, але й для глобальної громадської охорони здоров’я. Швидкий розвиток діагностичних технологій в останні роки мав трансформаційний вплив на виявлення та контроль захворювань свиней. Методи молекулярної діагностики, включаючи полімеразну ланцюгову реакцію (ПЛР) і секвенування наступного покоління (NGS), значно покращили можливості раннього виявлення, дозволяючи ветеринарам і фермерам ідентифікувати патогени до того, як у тварин з ’являться клінічні ознаки. Такі технології покращують нагляд за хворобами, полегшуючи швидку ідентифікацію інфікованих тварин, яких можна негайно ізолювати, щоб запобігти подальшому поширенню хвороби в стадах. Ця здатність раннього втручання є важливою для контролю спалахів та мінімізації їх впливу на економіку й здоров ’я. Інтеграція цих передових методів діагностики з такими інструментами, як аналіз даних, біоінформатика та машинне навчання відкрила нові горизонти в лікуванні захворювань. Завдяки прогнозному моделюванню та аналізу даних ці інструменти можуть допомогти передбачити спалахи та розробити більш цілеспрямовані стратегії лікування й профілактики. Наприклад, алгоритми машинного навчання можуть обробляти великі масиви даних із багатьох джерел, щоб точніше передбачати тенденції розвитку захворювань і визначати фактори високого ризику, забезпечуючи проактивне, а не реактивне лікування захворювань. Ця комбінація молекулярної діагностики та обчислювальних інструментів є потужним прогресом у ветеринарії, сприяючи швидкому та стратегічному реагуванню, необхідному для стримування інфекційних захворювань у популяціях свиней. Однак залишаються значні проблеми, особливо в контексті дрібних фермерських господарств і бідних на ресурси регіонів. Багато дрібних власників стикаються з перешкодами на шляху впровадження цих технологій через обмежені фінансові ресурси, відсутність технічної підготовки та недостатню інфраструктуру. Розв'язання цих проблем має вирішальне значення для того, щоб досягнення в діагностиці стали доступними для всіх рівнів галузі, сприяючи більш справедливим результатам для здоров’я та знижуючи ризик поширення захворювання в регіонах і громадах. Висновки. Оскільки ми рухаємося до майбутнього, де технології будуть більшою мірою інтегровані в сільське господарство та ветеринарію, надзвичайно важливо забезпечити доступність діагностичних інструментів для ферм будь-якого розміру. Усунення поточних бар’єрів, які обмежують доступ до передової діагностики, покращить як здоров’я, так і продуктивність популяцій свиней і підтримає ширші ініціативи щодо запобігання спалахам зоонозних захворювань. Сприяючи широкому використанню цих інновацій, галузь свинарства може розвиватися більш стабільно, відіграючи при цьому ключову роль у захисті глобального здоров ’я.

Ключові слова: інфекційні хвороби, свиня, діагностичні технології, ПЛР, секвенування нового покоління, молекулярна діагностика, управління захворюваннями, свинарство, зоонози.

БІБЛІОГРАФІЯ

  • 1. VanderWaal, K., & Deen, J. (2018). Global trends in infectious diseases of swine. Proceedings o f the National Academy o f Sciences o f the United States o f America, 115(45), 11495-11500. doi: 10.1073/pnas.1806068115
  • 2. Kappes, A., Tozooneyi, T., Shakil, G., Railey, A. F., McIntyre, K. M., Mayberry, D. E., Rushton, J., Pendell, D. L., & Marsh, T. L. (2023). Livestock health and disease economics: a scoping review of selected literature. Frontiers in Veterinary Science, 10, 1168649. doi: 10.3389/fvets.2023.1168649
  • 3. Pecora, N., & Milner, D. A., Jr. (2018). New Technologies for the Diagnosis of Infection. Diagnostic Pathology o f Infectious Disease, 104-117. doi: 10.1016/B978-0-323-44585-6.00006-0
  • 4. Gerace, E., Mancuso, G., Midiri, A., Poidomani, S., Zummo, S., & Biondo, C. (2022). Recent Advances in the Use of Molecular Methods for the Diagnosis of Bacterial Infections. Pathogens (Basel, Switzerland), 11(6), 663. doi: 10.3390/pathogens11060663
  • 5. Ahmad, S., Lohiya, S., Taksande, A., Meshram, R. J., Varma, A., & Vagha, K. (2024). A Comprehensive Review of Innovative Paradigms in Microbial Detection and Antimicrobial Resistance: Beyond Traditional Cultural Methods. Cureus, 16(6), e61476. doi: 10.7759/cureus.61476
  • 6. Food and Agriculture Organization of the United Nations. 2023. Meat [Internet]https://www.fao.org/markets-and-trade/commodities/meat/en/ (date of access: 5.09.2024).
  • 7. Kim, S. W., Gormley, A., Jang, K. B., & Duarte, M. E. (2024). Invited Review - Current status of global pig production: an overview and research trends. Animal bioscience, 37(4), 719-729. doi: 10.5713/ab.23.0367
  • 8. Mateos, G. G., Corrales, N. L., Talegon, G., & Aguirre, L. (2024). - Invited Review - Pig meat production in the European Union-27: current status, challenges, and future trends. Animal bioscience, 37(4), 755-774. https://doi.org/10.5713/ab.23.0496.
  • 9. Production - Pork, 2024. Available online: https://fas.usda.gov/data/production/commodity/0113000 (date of access: 5.09.2024).
  • 10. Miller, V., Reedy, J., Cudhea, F., Zhang, J., Shi, P., Erndt-Marino, J., Coates, J., Micha, R., Webb, P., Mozaffarian, D., & Global Dietary Database (2022). Global, regional, and national consumption of animal-source foods between 1990 and 2018: findings from the Global Dietary Database. The Lancet. Planetary health, 6(3), e243-e256. doi: 10.1016/S2542-5196(21)00352-1
  • 11. Sieminski, G., Skalecki, P., Florek, M., Domaradzki, P., Poleszak, E., Dmoch, M., Ryszkowska-Siwko, M., K^dzierska-Matysek, M., Teter, A., Kowalczyk, M., & Kaliniak-Dziura, A. (2023). Meat Nutritional Value of Pulawska Fattening Pigs, Polish Large White x Pulawska Crossbreeds and Hybrids of DanBred. Animals: an open access journal from MDPI, 13(15), 2408. doi: 10.3390/ani13152408
  • 12. Rowland, R. R., Lunney, J., & Dekkers, J. (2012). Control of porcine reproductive and respiratory syndrome (PRRS) through genetic improvements in disease resistance and tolerance. Frontiers in genetics, 3, 260. doi: 10.3389/fgene.2012.00260
  • 13. Statistics Poland Statistical Yearbook of Agriculture. Warsaw 2022; Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/rocznikistatystyczne/rocznik-statystyczny-rolnictwa-2022,6,16.html (date of access: 5.09.2024).
  • 14. Olszanska, A., Kowalska, A. S., Szymanska, J., Paskudzka, K., & Soukal, I. (2024). Trends in the livestock and pork market in Poland with regard to the environmental impact of this production direction. Economics and Environment, 88(1), 625. doi: 10.34659/eis.2024.88.1.625
  • 15. St^pien, S., & Polcyn, J. (2016). Pig Meat Market In Selected Eu Countries Under The conditions of Economic Integration: A Comparative analysis of Old and New Member States. Annales Universitatis Apulensis Series Oeconomica, 2(18), 172-178. doi: 10.29302/oeconomica.2016.18.2.14
  • 16. Popescu, A. (2009). Evolution of World Pork Market. Scientific Papers Series D, Vol. LII, Animal Science (Lucrari stiintifice, Seria D, Vol LI, Zootehnie), 263­ 269.
  • 17. Galli, F., Friker, B., Bearth, A., & Durr, S. (2022). Direct and indirect pathways for the spread of African swine fever and other porcine infectious diseases: an application of the mental models approach. Transboundary and emerging diseases, 69(5), e2602-e2616. doi: 10.1111/tbed.14605
  • 18. Cochran, H. J., Bosco-Lauth, A. M., Garry, F. B., Roman-Muniz, I. N., & Martin, J. N. (2023). African Swine Fever: A Review of Current Disease Management Strategies and Risks Associated with Exhibition Swine in the United States. Animals: an open access journal from MDPI, 13(23), 3713. doi: 10.3390/ani13233713
  • 19. Makovska, I., Chantziaras, I., Caekebeke, N., Dhaka, P., & Dewulf, J. (2024). Assessment of Cleaning and Disinfection Practices on Pig Farms across Ten European Countries. Animals: an open access journal from MDPI, 14(4), 593. doi: 10.3390/ani14040593
  • 20. Scollo, A., Perrucci, A., Stella, M. C., Ferrari, P., Robino, P., & Nebbia, P. (2023). Biosecurity and Hygiene Procedures in Pig Farms: Effects of a Tailor-Made Approach as Monitored by Environmental Samples. Animals: an open access journal from MDPI, 13(7), 1262. doi: 10.3390/ani13071262
  • 21. Alarcon, L. V., Allepuz, A., & Mateu, E. (2021). Biosecurity in pig farms: a review. Porcine health management, 7(1), 5. doi: 10.1186/s40813-020-00181-z
  • 22. Memarzadeh F. (2021). A Review of Recent Evidence for Utilizing Ultraviolet Irradiation Technology to Disinfect Both Indoor Air and Surfaces. Applied biosafety: journal of the American Biological Safety Association, 26(1), 52-56. doi: 10.1089/apb.20.0056
  • 23. EFSA Panel on Animal Health and Welfare (AHAW), Nielsen, S. S., Alvarez, J., Bicout, D. J., Calistri, P., Canali, E., Drewe, J. A., Garin-Bastuji, B., Gonzales Rojas, J. L., Herskin, M., Miranda Chueca, M. A., Michel, V., Padalino, B., Pasquali, P., Roberts, H. C., Sihvonen, L. H., Spoolder, H., Stahl, K., Velarde, A., Viltrop, A., ... Gortazar Schmidt, C. (2021). African swine fever and outdoor farming of pigs. EFSA journal. European Food Safety Authority, 19(6), e06639. doi: 10.2903/j.efsa.2021.6639
  • 24. Levis, D. G., & Baker, R. B. (2011). Biosecurity of pigs and farm security: University of Nebraska-Lincoln Extension.
  • 25. Jurado, C., Martmez-Aviles, M., De La Torre, A., Stukelj, M., de Carvalho Ferreira, H. C., Cerioli, M., Sanchez-Vizcamo, J. M., & Bellini, S. (2018). Relevant Measures to Prevent the Spread of African Swine Fever in the European Union Domestic Pig Sector. Frontiers in veterinary science, 5, 77. doi: 10.3389/fvets.2018.00077
  • 26. Msimang, V., Rostal, M. K., Cordel, C., Machalaba, C., Tempia, S., Bagge, W., Burt, F. J., Karesh, W. B., Paweska, J. T., & Thompson, P. N. (2022). Factors affecting the use of biosecurity measures for the protection of ruminant livestock and farm workers against infectious diseases in central South Africa. Transboundary and emerging diseases, 69(5), e1899-e1912. doi: 10.1111/tbed.14525
  • 27. Liu, S., Tao, D., Liao, Y., Yang, Y., Sun, S., Zhao, Y., Yang, P., Tang, Y., Chen, B., Liu, Y., Xie, S., & Tang, Z. (2021). Highly Sensitive CRISPR/Cas12a-Based Fluorescence Detection of Porcine Reproductive and Respiratory Syndrome Virus. ACS synthetic biology, 10(10), 2499-2507. doi: 10.1021/acssynbio.1c00103
  • 28. Augustyniak, A., & Pomorska-Mol, M. (2023). An Update in Knowledge of Pigs as the Source of Zoonotic Pathogens. Animals: an open access J. from MDPI, 13(20), 3281. doi: 10.3390/ani13203281
  • 29. Lunney, J. K., Benfield, D. A., & Rowland, R. R. (2010). Porcine reproductive and respiratory syndrome virus: an update on an emerging and re-emerging viral disease of swine. Virus research, 154(1-2), 1-6. doi: 10.1016/j.virusres.2010.10.009
  • 30. Butler, J. E., Lager, K. M., Golde, W., Faaberg, K. S., Sinkora, M., Loving, C., & Zhang, Y. I. (2014). Porcine reproductive and respiratory syndrome (PRRS): an immune dysregulatory pandemic. Immunologic research, 59(1-3), 81-108. doi: 10.1007/s12026-014-8549-5
  • 31. Done, S. H., & Paton, D. J. (1995). Porcine reproductive and respiratory syndrome : clinical disease, pathology and immunosuppression. The Veterinary record, 136(2), 32-35. doi: 10.1136/vr.136.2.32
  • 32. Cho, J. G., & Dee, S. A. (2006). Porcine reproductive and respiratory syndrome virus. Theriogenology, 66(3), 655-662. doi: 10.1016/j .theriogenology.2006.04.024
  • 33. Sun, Q., Xu, H., An, T., Cai, X., Tian, Z., & Zhang, H. (2023). Recent Progress in Studies of Porcine Reproductive and Respiratory Syndrome Virus 1 in China. Viruses, 15(7), 1528. doi: 10.3390/v15071528
  • 34. Matthews, S. G., Miller, A. L., Clapp, J., Plotz, T., & Kyriazakis, I. (2016). Early detection of health and welfare compromises through automated detection of behavioural changes in pigs. Veterinary journal (London, England: 1997), 217, 43-51. doi: 10.1016/j.tvjl.2016.09.005
  • 35. Moennig, V., Floegel-Niesmann, G., & Greiser-Wilke, I. (2003). Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Veterinary journal (London, England: 1997), 165(1), 11-20. doi: 10.1016/s1090-0233(02)00112-0
  • 36. Brockmeier S. L., Halbur P. G., Thacker E. L. (2002). Porcine Respiratory Disease Complex. In: Brogden KA, Guthmiller JM, editors. Polymicrobial Diseases. Washington (DC): ASM Press; Chapter 13. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2481/ (date of access: 5.09.2024).
  • 37. Wagner, J., Kneucker, A., Liebler-Tenorio, E., Fachinger, V., Glaser, M., Pesch, S., Murtaugh, M. P., & Reinhold, P. (2011). Respiratory function and pulmonary lesions in pigs infected with porcine reproductive and respiratory syndrome virus. Veterinary journal (London, England: 1997), 187(3), 310-319. doi: 10.1016/j.tvjl.2009.12.022
  • 38. Robbins, R. C., Almond, G., & Byers, E. (2014). Swine Diseases and Disorders. Encyclopedia o f Agriculture and F ood Systems, 261-276. doi: 10.1016/B978- 0-444-52512-3.00134-0
  • 39. Saif L. J. (1999). Enteric viral infections of pigs and strategies for induction of mucosal immunity. Advances in veterinary medicine, 41, 429-446. doi: 10.1016/s0065-3519(99)80033 -0
  • 40. Liu, Q., & Wang, H. Y. (2021). Porcine enteric coronaviruses: an updated overview of the pathogenesis, prevalence, and diagnosis. Veterinary research communications, 45(2-3), 75-86. doi: 10.1007/s11259-021-09808-0
  • 41. Njau, E. P., Machuka, E. M., Cleaveland, S., Shirima, G. M., Kusiluka, L. J., Okoth, E. A., & Pelle, R. (2021). African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa. Viruses, 13(11), 2285. doi: 10.3390/v13112285
  • 42. Caliendo, A. M., Gilbert, D. N., Ginocchio, C. C., Hanson, K. E., May, L., Quinn, T. C., Tenover, F. C., Alland, D., Blaschke, A. J., Bonomo, R. A., Carroll, K. C., Ferraro, M. J., Hirschhorn, L. R., Joseph, W. P., Karchmer, T., MacIntyre, A. T., Reller, L. B., Jackson, A. F., & Infectious Diseases Society of America (IDSA) (2013). Better tests, better care: improved diagnostics for infectious diseases. Clinical infectious diseases: an official publication o f the Infectious Diseases Society o f America, 57 Suppl. 3(Suppl. 3), S139-S170. doi: 10.1093/cid/cit578
  • 43. Yamane N. (1998). [Blood culture: gold standard for definitive diagnosis of bacterial and fungal infections - from the laboratory aspect]. The Japanese journal o f clinical pathology, 46(9), 887-892.
  • 44. Tjandra, K. C., Ram-Mohan, N., Abe, R., Hashemi, M. M., Lee, J. H., Chin, S. M., Roshardt, M. A., Liao, J. C., Wong, P. K., & Yang, S. (2022). Diagnosis of Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid Identification and Antibiotic Susceptibility Testing. Antibiotics (Basel, Switzerland), 11(4), 511. doi: 10.3390/antibiotics11040511
  • 45. Yang, S., & Rothman, R. E. (2004). PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet. Infectious diseases, 4(6), 337-348. https://doi.org/10.1016/S1473-3099(04)01044-8.
  • 46. Bursle, E., & Robson, J. (2016). Non-culture methods for detecting infection. Australianprescriber, 39(5), 171-175. doi: 10.18773/austprescr.2016.059
  • 47. Yu, X., Zhu, X., Chen, X., Li, D., Xu, Q., Yao, L., Sun, Q., Ghonaim, A. H., Ku, X., Fan, S., Yang, H., & He, Q. (2021). Establishment of a Blocking ELISA Detection Method for Against African Swine Fever Virus p30 Antibody. Frontiers in Veterinary Sci., 8, 781373. doi: 10.3389/fvets.2021.781373
  • 48. Zhou, L., Song, J., Wang, M., Sun, Z., Sun, J., Tian, P., Zhuang, G., Zhang, A., Wu, Y., & Zhang, G. (2023). Establishment of a Dual-Antigen Indirect ELISA Based on p30 and pB602L to Detect Antibodies against African Swine Fever Virus. Viruses, 15(9), 1845. doi: 10.3390/v15091845
  • 49. Gao, Z., Shao, J. J., Zhang, G. L., Ge, S. D., Chang, Y. Y., Xiao, L., & Chang, H. Y. (2021). Development of an indirect ELISA to specifically detect antibodies against African swine fever virus: bioinformatics approaches. Virology Journal, 18(1), 97. doi: 10.1186/s12985-021-01568-2
  • 50. Gerber, P. F., Lelli, D., Zhang, J., Strandbygaard, B., Moreno, A., Lavazza, A., Perulli, S., B0tner, A., Comtet, L., Roche, M., Pourquier, P., Wang, C., & Opriessnig, T. (2016). Diagnostic evaluation of assays for detection of antibodies against porcine epidemic diarrhea virus (PEDV) in pigs exposed to different PEDV strains. Preventive veterinary medicine, 135, 87-94. doi: 10.1016/j.prevetmed.2016.11.005
  • 51. Hussaini, H. M., Seo, B., & Rich, A. M. (2023). Immunohistochemistry and Immunofluorescence. Methods in molecular biology (Clifton, N.J.), 2588, 439-450. doi: 10.1007/978-1 -0716-2780-8_26
  • 52. Im, K., Mareninov, S., Diaz, M. F. P., & Yong, W. H. (2019). An Introduction to Performing Immunofluorescence Staining. Methods in molecular biology (Clifton, N.J.), 1897, 299-311. doi: 10.1007/978-1-4939-8935-5_26
  • 53. Zhou, F., Sun, H., & Wang, Y. (2014). Porcine bocavirus: achievements in the past five years. Viruses, 6(12), 4946-4960. doi: 10.3390/v6124946
  • 54. Vijayakumar, T., Divya, B., Vasanthi, V., Narayan, M., Kumar, A. R., & Krishnan, R. (2023). Diagnostic Utility of Gram Stain for Oral Smears - A Review. J. o f M icroscopy and Ultrastructure, 11(3), 130-134. doi: 10.4103/jmau.jmau_108_22
  • 55. Zurac, S., Mogodici, C., Poncu, T., Trascau, M., Popp, C., Nichita, L., Cioplea, M., Ceachi, B., Sticlaru, L., Cioroianu, A., Busca, M., Stefan, O., Tudor, I., Voicu, A., Stanescu, D., Mustatea, P., Dumitru, C., & Bastian, A. (2022). A New Artificial Intelligence-Based Method for Identifying Mycobacterium Tuberculosis in Ziehl-Neelsen Stain on Tissue. Diagnostics (Basel, Switzerland), 12(6), 1484. doi: 10.3390/diagnostics12061484
  • 56. Dittmar, M., Hoelzle, L. E., Hoelzle, K., Sydler, T., Corboz, L., Miserez, R., & Wittenbrink, M. M. (2003). Diagnosis of porcine proliferative enteropathy: detection of Lawsonia intracellularis by pathological examinations, polymerase chain reaction and cell culture inoculation. Journal o f veterinary medicine. B, Infectious diseases and veterinary public health, 50(7), 332-338. doi: 10.1046/j .1439- 0450.2003.00691.x
  • 57. Schwartz W. L. (1982). Laboratory diagnosis of swine diseases. The Veterinary clinics o f North America. Large animal practice, 4(2), 201-223. doi: 10.1016/s0196-9846( 17)30103 -9
  • 58. Rodriguez-Bertos, A., Cadenas-Fernandez, E., Rebollada-Merino, A., Porras-Gonzalez, N., Mayoral-Alegre, F. J., Barreno, L., Kosowska, A., Tome-Sanchez, I., Barasona, J. A., & Sanchez-Vizcamo, J. M. (2020). Clinical Course and Gross Pathological Findings in Wild Boar Infected with a Highly Virulent Strain of African Swine Fever Virus Genotype II. Pathogens (Basel, Switzerland), 9(9), 688. doi: 10.3390/pathogens9090688
  • 59. Stringer, O. W., Li, Y., Bosse, J. T., & Langford, P. R. (2022). JMM Profile: Actinobacillus pleuropneumoniae: a major cause of lung disease in pigs but difficult to control and eradicate. J. o f M edical M icrobiology, 71(3), 001483. doi: 10.1099/jmm.0.001483
  • 60. Malik, Y. S., Bhat, S., Kumar, O. R. V., Yadav, A. K., Sircar, S., Ansari, M. I., Sarma, D. K., Rajkhowa, T. K., Ghosh, S., & Dhama, K. (2020). Classical Swine Fever Virus Biology, Clinicopathology, Diagnosis, Vaccines and a Meta-Analysis of Prevalence: A Review from the Indian Perspective. Pathogens (Basel, Switzerland), 9(6), 500. doi: 10.3390/pathogens9060500
  • 61. Izzati, U. Z., Hoa, N. T., Lan, N. T., Diep, N. V., Fuke, N., Hirai, T., & Yamaguchi, R. (2021). Pathology of the outbreak of subgenotype 2.5 classical swine fever virus in northern Vietnam. Veterinary medicine and science, 7(1), 164-174. doi: 10.1002/vms3.339
  • 62. Gupta, E., Bhalla, P., Khurana, N., & Singh, T. (2009). Histopathology for the diagnosis of infectious diseases. Indian J. o f M edical M icrobiology, 27(2), 100-106. doi: 10.4103/0255-0857.49423
  • 63. Sabino, R., & Wiederhold, N. (2022). Diagnosis from Tissue: Histology and Identification. Journal o f fungi (Basel, Switzerland), 8(5), 505. doi: 10.3390/jof8050505
  • 64. Mackay I. M. (2004). Real-time PCR in the microbiology laboratory. Clinical microbiology and infection: the official publication o f the European Society o f Clinical M icrobiology and Infectious Diseases, 10(3), 190-212. doi: 10.1111/j.1198- 743x.2004.00722.x
  • 65. Goto, Y., Fukunari, K., Tada, S., Ichimura, S., Chiba, Y., & Suzuki, T. (2023). A multiplex real-time RT-PCR system to simultaneously diagnose 16 pathogens associated with swine respiratory disease. J. o f Applied M icrobiology, 134(11), lxad263. doi: 10.1093/jambio/lxad263
  • 66. Dias, N. L., Fonseca Junior, A. A., Oliveira, A. M., Sales, E. B., Alves, B. R., Dorella, F. A., & Camargos, M. F. (2014). Validation of a real time PCR for classical Swine Fever diagnosis. Veterinary Medicine International, 2014, 171235. doi: 10.1155/2014/171235
  • 67. Fornyos, K., Szabo, I., Lebhardt, K., & Balint, A. (2022). Development of a farm-specific real-time quantitative RT-PCR assay for the detection and discrimination of wild-type porcine reproductive respiratory syndrome virus and the vaccine strain in a farm under eradication. Acta Veterinaria Hungarica, Sep. 1. doi: 10.1556/004.2022.00020
  • 68. Shin, G. E., Park, J. Y., Lee, K. K., Ko, M. K., Ku, B. K., Park, C. K., & Jeoung, H. Y. (2022). Genetic diversity of porcine reproductive and respiratory syndrome virus and evaluation of three one-step real-time RT-PCR assays in Korea. BMC veterinary research, 18(1), 327. doi: 10.1186/s12917-022-03407-0
  • 69. Zheng, L. L., Chai, L. Y., Tian, R. B., Zhao, Y., Chen, H. Y., & Wang, Z. Y. (2020). Simultaneous detection of porcine reproductive and respiratory syndrome virus and porcine circovirus 3 by SYBR Green І-based duplex real-time PCR. Molecular and Cellular Probes, 49, 101474. doi: 10.1016/j.mcp.2019.101474
  • 70. Tu, T., Pang, M., Jiang, D., Zhou, Y., Wu, X., Yao, X., Luo, Y., Yang, Z., Ren, M., Lu, A., Zhang, G., Yu, Y., & Wang, Y. (2023). Development of a Real-Time TaqMan RT-PCR Assay for the Detection of NADC34-like Porcine Reproductive and Respiratory Syndrome Virus. Vet. Sci., 10(4), 279. doi: 10.3390/vetsci10040279
  • 71. Steiger, Y., Ackermann, M., Mettraux, C., & Kihm, U. (1992). Rapid and biologically safe diagnosis of African swine fever virus infection by using polymerase chain reaction. J. o f Clinical M icrobiology, 30(1), 1-8. doi: 10.1128/jcm.30.1.1-8.1992
  • 72. Chae, H., Roh, H. S., Jo, Y. M., Kim, W. G., Chae, J. B., Shin, S. U., & Kang, J. W. (2023). Development of a one-step reverse transcription-quantitative polymerase chain reaction assay for the detection of porcine reproductive and respiratory syndrome virus. PloS one, 18(10), e0293042. doi: 10.1371/journal.pone.0293042
  • 73. Elnifro, E. M., Ashshi, A. M., Cooper, R. J., & Klapper, P. E. (2000). Multiplex PCR: optimization and application in diagnostic virology. Clinical microbiology reviews, 13(4), 559-570. doi: 10.1128/CMR.13.4.559
  • 74. Ogawa, H., Taira, O., Hirai, T., Takeuchi, H., Nagao, A., Ishikawa, Y., Tuchiya, K., Nunoya, T., & Ueda, S. (2009). Multiplex PCR and multiplex RT-PCR for inclusive detection of major swine DNA and RNA viruses in pigs with multiple infections. J. o f Virological Methods, 160(1-2), 210-214. doi: 10.1016/j.jviromet.2009.05.010
  • 75. Fourour, S., Fablet, C., Tocqueville, V., Dorenlor, V., Eono, F., Eveno, E., Kempf, I., & Marois-Crehan, C. (2018). A new multiplex real-time TaqMan® PCR for quantification of M ycoplasma hyopneumoniae, M. hyorhinis and M. flocculare: exploratory epidemiological investigations to research mycoplasmal association in enzootic pneumonia-like lesions in slaughtered pigs. J. o f Applied Microbiology, 125(2), 345-355. doi: 10.1111/jam.13770
  • 76. Qin, D. (2019). Next-generation sequencing and its clinical application. Cancer Biology & Medicine, 16(1), 4-10. doi: 10.20892/j.issn.2095-3941.2018.0055
  • 77. Satam, H., Joshi, K., Mangrolia, U., Waghoo, S., Zaidi, G., Rawool, S., Thakare, R. P., Banday, S., Mishra, A. K., Das, G., & Malonia, S. K. (2023). NextGeneration Sequencing Technology: Current Trends and Advancements. Biology, 12(7), 997. doi: 10.3390/biology12070997
  • 78. Forth, J. H., Calvelage, S., Fischer, M., Hellert, J., Sehl-Ewert, J., Roszyk, H., Deutschmann, P., Reichold, A., Lange, M., Thulke, H. H., Sauter-Louis, C., Hoper, D., Mandyhra, S., Sapachova, M., Beer, M., & Blome, S. (2023). African swine fever virus - variants on the rise. Emerging microbes & infections, 12(1), 2146537. doi: 10.1080/22221751.2022.2146537
  • 79. Neyton, L. P. A., Langelier, C. R., & Calfee, C. S. (2023). Metagenomic Sequencing in the ICU for Precision Diagnosis of Critical Infectious Illnesses. Critical care (London, England), 27(1), 90. doi: 10.1186/s13054-023-04365-1
  • 80. Temmam, S., Davoust, B., Berenger, J. M., Raoult, D., & Desnues, C. (2014). Viral metagenomics on animals as a tool for the detection of zoonoses prior to human infection? Intern. J. o f M olecular Sci., 15(6), 10377-10397. doi: 10.3390/ijms150610377
  • 81. Ramesh, A., Bailey, E. S., Ahyong, V., Langelier, C., Phelps, M., Neff, N., Sit, R., Tato, C., DeRisi, J. L., Greer, A. G., & Gray, G. C. (2021). Metagenomic characterization of swine slurry in a North American swine farm operation. Scientific Reports, 11(1), 16994. doi: 10.1038/s41598-021-95804-y
  • 82. Hansen, S., & Abd El Wahed, A. (2020). Point-Of-Care or Point-Of-Need Diagnostic Tests: Time to Change Outbreak Investigation and Pathogen Detection. Tropical Medicine and Infectious Disease, 5(4), 151. doi: 10.3390/tropicalmed5040151
  • 83. Wang, C., Liu, M., Wang, Z., Li, S., Deng, Y., & He, N. (2021). Point-ofcare diagnostics for infectious diseases: from methods to devices. Nano today, 37, 101092. doi: 10.1016/j.nantod.2021.101092
  • 84. Alseed, M. M., Syed, H., Onbasli, M. C., Yetisen, A. K., & Tasoglu, S. (2021). Design and Adoption of Low-Cost Point-of-Care Diagnostic Devices: Syrian Case. Micromachines, 12(8), 882. doi: 10.3390/mi12080882
  • 85. Bienek, D. R., & Charlton, D. G. (2012). The effect of simulated field storage conditions on the accuracy of rapid user-friendly blood pathogen detection kits. M ilitary M ed., 177(5), 583-588. doi: 10.7205/milmed-d-11-00420 86. Nafea, A. M., Wang, Y., Wang, D., Salama, A. M., Aziz, M. A., Xu, S., & Tong, Y. (2024). Application of next-generation sequencing to identify different pathogens. Frontiers in M icrobiology, 14, 1329330. doi: 10.3389/fmicb.2023.1329330
  • 87. Chu, H., Liu, C., Liu, J., Yang, J., Li, Y., & Zhang, X. (2021). Recent advances and challenges of biosensing in point-of-care molecular diagnosis. Sensors and actuators. B, Chemical, 348, 130708. doi: 10.1016/j.snb.2021.130708
  • 88. Liu, M., & Wen, Y. (2024). Point-of-care testing for early-stage liver cancer diagnosis and personalized medicine: Biomarkers, current technologies and perspectives. Heliyon, 10(19), e38444. doi: 10.1016/j.heliyon.2024.e38444
  • 89. Domrazek, K., & Jurka, P. (2024). Application of Next-Generation Sequencing (NGS) Techniques for Selected Companion Animals. Animals : an open access j. from MDPI, 14(11), 1578. doi: 10.3390/ani14111578
  • 90. Van Borm, S., Belak, S., Freimanis, G., Fusaro, A., Granberg, F., Hoper, D., King, D. P., Monne, I., Orton, R., & Rosseel, T. (2015). Next-generation sequencing in veterinary medicine: how can the massive amount of information arising from high-throughput technologies improve diagnosis, control, and management of infectious diseases? M ethods in molecular biology (Clifton, N. J.), 1247, 415-436. doi: 10.1007/978-1-4939-2004-4_30
  • 91. Rajkhowa, S., Sonowal, J., Pegu, S. R., Sanger, G. S., Deb, R., Das, P. J., Doley, J., Paul, S., & Gupta, V. K. (2024). Natural co-infection of pigs with African swine fever virus and porcine reproductive and respiratory syndrome virus in India. Brazilian J. o f M icrobiology: [publication o f the Brazilian Society fo r M icrobiology], 55(1), 1017­ 1022. doi: 10.1007/s42770-023-01203-y
  • 92. Kamboj, A., Dumka, S., Saxena, M. K., Singh, Y., Kaur, B. P., da Silva, S. J. R., & Kumar, S. (2024). A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses, 16(6), 833. doi: 10.3390/v16060833
  • 93. Elnagar, A., Blome, S., Beer, M., & Hoffmann, B. (2022). Point-of-Care Testing for Sensitive Detection of the African Swine Fever Virus Genome. Viruses, 14(12), 2827. doi: 10.3390/v14122827
  • 94. Li, Z., Chen, W., Qiu, Z., Li, Y., Fan, J., Wu, K., Li, X., Zhao, M., Ding, H., Fan, S., & Chen, J. (2022). African Swine Fever Virus: A Review. Life (Basel, Switzerland), 12(8), 1255. doi: 10.3390/life12081255
  • 95. Done, S. H., Paton, D. J., & White, M. E. (1996). Porcine reproductive and respiratory syndrome (PRRS): a review, with emphasis on pathological, virological and diagnostic aspects. The British Vet. J., 152(2), 153-174. doi: 10.1016/s0007- 1935(96)80071-6
  • 96. Pan, J., Zeng, M., Zhao, M., & Huang, L. (2023). Research Progress on the detection methods of porcine reproductive and respiratory syndrome virus. Frontiers in M icrobiology, 14, 1097905. doi: 10.3389/fmicb.2023.1097905
  • 97. Fu, X., Wang, Q., Ma, B., Zhang, B., Sun, K., Yu, X., Ye, Z., & Zhang, M. (2023). Advances in Detection Techniques for the H5N1 Avian Influenza Virus. International J. o f M olecular Sci., 24(24), 17157. doi: 10.3390/ijms242417157
  • 98. Stringer, O. W., Li, Y., Bosse, J. T., Forrest, M. S., Hernandez-Garcia, J., Tucker, A. W., Nunes, T., Costa, F., Mortensen, P., Velazquez, E., Penny, P., RodriguezManzano, J., Georgiou, P., & Langford, P. R. (2022). Rapid Detection of Actinobacillus pleuropneumoniae From Clinical Samples Using Recombinase Polymerase Amplification. Frontiers in Vet. Sci., 9, 805382. doi: 10.3389/fvets.2022.805382
  • 99. Cuccato, M., Divari, S., Ciaramita, S., Sereno, A., Campelli, D., Biolatti, P. G., Biolatti, B., Meliota, F., Bollo, E., & Cannizzo, F. T. (2024). Actinobacillus pleuropneumoniae Serotypes by Multiplex PCR Identification and Evaluation of Lung Lesions in Pigs from Piedmont (Italy) Farms. Animals: an open access j. from MDPI, 14(15), 2255. doi: 10.3390/ani14152255
  • 100. Caron, J., Ouardani, M., & Dea, S. (2000). Diagnosis and differentiation of Mycoplasma hyopneumoniae and Mycoplasma hyorhinis infections in pigs by PCR amplification of the p36 and p46 genes. J. o f Clinical M icrobiology, 38(4), 1390-1396. doi: 10.1128/JCM.38.4.1390-1396.2000
  • 101. Sibila, M., Pieters, M., Molitor, T., Maes, D., Haesebrouck, F., & Segales, J. (2009). Current perspectives on the diagnosis and epidemiology of M ycoplasma hyopneumoniae infection. Veterinary Journal (London, England: 1997), 181(3), 221-231. doi: 10.1016/j.tvjl.2008.02.020
  • 102. Farzan, A., Friendship, R. M., & Dewey, C. E. (2007). Evaluation of enzyme-linked immunosorbent assay (ELISA) tests and culture for determining Salmonella status of a pig herd. Epidemiology and infection, 135(2), 238-244. doi: 10.1017/S0950268806006868
  • 103. Soliani, L., Rugna, G., Prosperi, A., Chiapponi, C., & Luppi, A. (2023). Salmonella Infection in Pigs: Disease, Prevalence, and a Link between Swine and Human Health. Pathogens (Basel, Switzerland), 12(10), 1267. doi: 10.3390/pathogens12101267
  • '104. Kochanowski, M., Karamon, J., D^browska, J., Dors, A., CzyzewskaDors, E., & Cencek, T. (2017). Occurrence of Intestinal Parasites in Pigs in Poland - the Influence of Factors Related to the Production System. J o f Vet. Research, 61(4), 459­ 466. doi: 10.1515/jvetres-2017-0053
  • 105. Tassis, P., Symeonidou, I., Gelasakis, A. I., Kargaridis, M., Aretis, G., Arsenopoulos, K. V., Tzika, E., & Papadopoulos, E. (2022). Serological Assessment of Ascaris suum Exposure in Greek Pig Farms and Associated Risk Factors Including Lawsonia intracellularis. Pathogens (Basel, Switzerland), 11(9), 959. doi: 10.3390/pathogens11090959
  • 106. Baie§, M. H., Boros, Z., Gherman, C. M., Spinu, M., Mathe, A., Pataky, S., Lefkaditis, M., & Cozma, V. (2022). Prevalence of Swine Gastrointestinal Parasites in Two Free-Range Farms from Nord-West Region of Romania. Pathogens (Basel, Switzerland), 11(9), 954. doi: 10.3390/pathogens11090954
  • 107. Joachim, A., Winkler, C., Ruczizka, U., Ladinig, A., Koch, M., Tichy, A., & Schwarz, L. (2021). Comparison of different detection methods for Ascaris suum infection on Austrian swine farms. Porcine health management, 7(1), 57. doi: 10.1186/s40813-021 -00236-9
  • 108. Hawash, M. B., Betson, M., Al-Jubury, A., Ketzis, J., LeeWillingham, A., Bertelsen, M. F., Cooper, P. J., Littlewood, D. T., Zhu, X. Q., & Nejsum, P. (2016). Whipworms in humans and pigs: origins and demography. Parasites & Vectors, 9, 37. doi: 10.1186/s13071-016-1325-8
  • 109. Bunger, M., Renzhammer, R., Joachim, A., Hinney, B., Brunthaler, R., Al Hossan, M., Matt, J., Nedorost, N., Weissenbacher-Lang, C., & Schwarz, L. (2022). Trichurosis on a Conventional Swine Fattening Farm with Extensive Husbandry-A Case Report. Pathogens (Basel, Switzerland), 11(7), 775. doi: 10.3390/pathogens11070775
  • 110. Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. M olecules (Basel, Switzerland), 23(4), 795. doi: 10.3390/molecules23040795
  • 111. Caneschi, A., Bardhi, A., Barbarossa, A., & Zaghini, A. (2023). The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics (Basel, Switzerland), 12(3), 487. doi: 10.3390/antibiotics12030487
  • 112. Kaprou, G. D., Bergspica, I., Alexa, E. A., Alvarez-Ordonez, A., & Prieto, M. (2021). Rapid Methods for Antimicrobial Resistance Diagnostics. Antibiotics (Basel, Switzerland), 10(2), 209. doi: 10.3390/antibiotics10020209
  • 113. Wang, H., Jia, C., Li, H., Yin, R., Chen, J., Li, Y., & Yue, M. (2022). Paving the way for precise diagnostics of antimicrobial resistant bacteria. Frontiers in molecular biosciences, 9, 976705. doi: 10.3389/fmolb.2022.976705
  • 114. Poeta Silva, A. P. S., Magtoto, R. L., Souza Almeida, H. M., McDaniel, A., Magtoto, P. D., Derscheid, R. J., Merodio, M. M., Matias Ferreyra, F. S., Gatto, I. R. H., Baum, D. H., Clavijo, M. J., Arruda, B. L., Zimmerman, J. J., & GimenezLirola, L. G. (2020). Performance of Commercial M ycoplasma hyopneumoniae Serum Enzyme-Linked Immunosorbent Assays under Experimental and Field Conditions. J. o f Clinical M icrobiology, 58(12), e00485-20. doi: 10.1128/JCM.00485-20
  • 115. Deeks, J. J., Dinnes, J., Takwoingi, Y., Davenport, C., Spijker, R., TaylorPhillips, S., Adriano, A., Beese, S., Dretzke, J., Ferrante di Ruffano, L., Harris, I. M., Price, M. J., Dittrich, S., Emperador, D., Hooft, L., Leeflang, M. M., Van den Bruel, A., & Cochrane COVID-19 Diagnostic Test Accuracy Group (2020). Antibody tests for identification of current and past infection with SARS-CoV-2. The Cochrane database o f systematic reviews, 6(6), CD013652. doi: 10.1002/14651858.CD013652
  • 116. Huang, H. S., Tsai, C. L., Chang, J., Hsu, T. C., Lin, S., & Lee, C. C. (2018) . Multiplex PCR system for the rapid diagnosis of respiratory virus infection: systematic review and meta-analysis. Clinical microbiology and infection: the official publication o f the European Society o f Clinical M icrobiology and Infectious Diseases, 24(10), 1055-1063. doi: 10.1016/j.cmi.2017.11.018
  • 117. Hobbs, E. C., Colling, A., Gurung, R. B., & Allen, J. (2021). The potential of diagnostic point-of-care tests (POCTs) for infectious and zoonotic animal diseases in developing countries: Technical, regulatory and sociocultural considerations. Transboundary and Emerging Diseases, 68(4), 1835-1849. doi: 10.1111/tbed.13880
  • 118. Kimani, F. W., Mwangi, S. M., Kwasa, B. J., Kusow, A. M., Ngugi, B. K., Chen, J., Liu, X., Cademartiri, R., & Thuo, M. M. (2017). Rethinking the Design of LowCost Point-of-Care Diagnostic Devices. Micromachines, 8(11), 317. doi: 10.3390/mi8110317
  • 119. Lopez, W. A., Zimmerman, J. J., Gauger, P. C., Harmon, K. M., Bradner, L., Zhang, M., Gimenez-Lirola, L., Ramirez, A., Cano, J. P., & Linhares, D. C. L. (2020). Practical aspects of PRRSV RNA detection in processing fluids collected in commercial swine farms. Preventive Vet. Medicine, 180, 105021. doi: 10.1016/j.prevetmed.2020.105021
  • 120. Trevisan, G., Jablonski, E., Angulo, J., Lopez, W. A., & Linhares, D. C. L. (2019) . Use of processing fluid samples for longitudinal monitoring of PRRS virus in herds undergoing virus elimination. Porcine Health Management, 5, 18. doi: 10.1186/s40813-019-0125-x
  • 121. Vilalta, C., Sanhueza, J., Alvarez, J., Murray, D., Torremorell, M., Corzo, C., & Morrison, R. (2018). Use of processing fluids and serum samples to characterize porcine reproductive and respiratory syndrome virus dynamics in 3 day-old pigs. Veterinary microbiology, 225, 149-156. doi: 10.1016/j.vetmic.2018.09.006
  • 122. Robert, E., Goonewardene, K., El Kanoa, I., Hochman, O., Nfon, C., & Ambagala, A. (2024). Oral Fluids for the Early Detection of Classical Swine Fever in Commercial Level Pig Pens. Viruses, 16(3), 318. doi: 10.3390/v16030318
  • 123. Hernandez-Garcia, J., Robben, N., Magnee, D., Eley, T., Dennis, I., Kayes, S. M., Thomson, J. R., & Tucker, A. W. (2017). The use of oral fluids to monitor key pathogens in porcine respiratory disease complex. Porcine Health Management, 3, 7. doi: 10.1186/s40813-017-0055-4
  • 124. Callens, M., & De Clercq, K. (1999). Highly sensitive detection of swine vesicular disease virus based on a single tube RT-PCR system and DIG-ELISA detection. J. o f VirologicalM ethods, 77(1), 87-99. doi: 10.1016/s0166-0934(98)00140-2
  • 125. Henao-Diaz, A., Gimenez-Lirola, L., Baum, D. H., & Zimmerman, J. (2020) . Guidelines for oral fluid-based surveillance of viral pathogens in swine. Porcine Health Management, 6, 28. doi: 10.1186/s40813-020-00168-w
  • 126. Chen, W., Wang, W., Wang, X., Li, Z., Wu, K., Li, X., Li, Y., Yi, L., Zhao, M., Ding, H., Fan, S., & Chen, J. (2022). Advances in the differential molecular diagnosis of vesicular disease pathogens in swine. Frontiers in M icrobiology, 13, 1019876. doi: 10.3389/fmicb.2022.1019876
  • 127. Roberts, N. E., & Almond, G. W. (2003). Infection of growing swine with porcine reproductive and respiratory syndrome virus and M ycoplasma hyopneumoniae - effects on growth, serum metabolites, and insulin-like growth factor-I. The Canadian Veterinary J. = La Revue Veterinaire Canadienne, 44(1), 31-37.
  • 128. Kirkden, R. D., Broom, D. M., & Andersen, I. L. (2013). Invited review: piglet mortality: management solutions. J. o f Animal Sci., 91(7), 3361-3389. doi: 10.2527/jas.2012-5637
  • 129. Erez, M. S., Dogan, І., Kozan, E., & Goksu, A. (2023). A Survey of Knowledge, Approaches, and Practices Surrounding Parasitic Infections and Antiparasitic Drug Usage by Veterinarians in Turkiye. Animals: an open access j. from MDPI, 13(17), 2693. doi: 10.3390/ani13172693
  • 130. Turlewicz-Podbielska, H., Wlodarek, J., & Pomorska-Mol, M. (2020). Noninvasive strategies for surveillance of swine viral diseases: a review. J. o f Vet. Diagnostic Investigation: official publication o f the American Association o f Veterinary Laboratory Diagnosticians, Inc, 32(4), 503-512. doi: 10.1177/1040638720936616
  • 131. Jia, Y., Sun, W., Su, G., Hua, J., & He, Z. (2022). The Threshold Effect of Swine Epidemics on the Pig Supply in China. Animals: an open access j. from MDPI, 12(19), 2595. doi: 10.3390/ani12192595
  • 132. Chambers, M. A., Graham, S. P., & La Ragione, R. M. (2016). Challenges in Veterinary Vaccine Development and Immunization. Methods in Molecular Biology (Clifton, N.J.), 1404, 3-35. doi: 10.1007/978-1-4939-3389-1_1
  • 133. Koketsu, Y., Tani, S., & Iida, R. (2017). Factors for improving reproductive performance of sows and herd productivity in commercial breeding herds. Porcine Health Management, 3, 1. doi: 10.1186/s40813-016-0049-7
  • 134. Hayama, Y., Sawai, K., Yoshinori, M., Yamaguchi, E., Shimizu, Y., & Yamamoto, T. (2022). Pig farm vaccination against classical swine fever reduces the risk of transmission from wild boar. Preventive Vet. Medicine, 198, 105554. doi: 10.1016/j .prevetmed.2021.105554
  • 135. Papatsiros, V. G., Papakonstantinou, G. I., Meletis, E., Koutoulis, K., Athanasakopoulou, Z., Maragkakis, G., Labronikou, G., Terzidis, I., Kostoulas, P., & Billinis, C. (2023). Seroprevalence of Swine Influenza A Virus (swIAV) Infections in Commercial Farrow-to-Finish Pig Farms in Greece. Veterinary Sci., 10(10), 599. doi: 10.3390/vetsci10100599
  • 136. Dhaka, P., Chantziaras, I., Vijay, D., Bedi, J. S., Makovska, I., Biebaut, E., & Dewulf, J. (2023). Can Improved Farm Biosecurity Reduce the Need for Antimicrobials in Food Animals? A Scoping Review. Antibiotics (Basel, Switzerland), 12(5), 893. doi: 10.3390/antibiotics12050893
  • 137. EFSA Panel on Animal Health and Welfare (AHAW), Nielsen, S. S., Alvarez, J., Bicout, D. J., Calistri, P., Canali, E., Drewe, J. A., Garin-Bastuji, B., Gonzales Rojas, J. L., Gortazar Schmidt, C., Herskin, M., Michel, V., Miranda Chueca, M. A., Padalino, B., Pasquali, P., Sihvonen, L. H., Spoolder, H., Stahl, K., Velarde, A., Viltrop, A., ... Roberts, H. C. (2021). Assessment of the control measures of the category A diseases of Animal Health Law: Classical Swine Fever. EFSA J. European F ood Safety Authority, 19(7), e06707. doi: 10.2903/j.efsa.2021.6707
  • 138. Grondal, H., Tuominen, K., & Sternberg Lewerin, S. (2023). Perspectives of on-farm biosecurity and disease prevention among selected pig veterinarians and pig farmers in Sweden. Vet. Record Open, 10(2), e68. doi: 10.1002/vro2.68
  • 139. Bortolozzo, F. P., Zanin, G. P., Ulguim, R. D. R., & Mellagi, A. P. G. (2023). Managing Reproduction in Hyperprolific Sow Herds. Animals: an open access j. from MDPI, 13(11), 1842. doi: 10.3390/ani13111842
  • 140. Youssef, D. M., Wieland, B., Knight, G. M., Lines, J., & Naylor, N. R. (2021). The effectiveness of biosecurity interventions in reducing the transmission of bacteria from livestock to humans at the farm level: A systematic literature review. Zoonoses and Public Health, 68(6), 549-562. doi: 10.1111/zph.12807
  • 141. Libera, K., Konieczny, K., Grabska, J., Szopka, W., Augustyniak, A., & Pomorska-Mol, M. (2022). Selected Livestock-Associated Zoonoses as a Growing Challenge for Public Health. Infectious Disease Reports, 14(1), 63-81. doi: 10.3390/idr14010008
  • 142. Benjamin, M., & Yik, S. (2019). Precision Livestock Farming in Swine Welfare: A Review for Swine Practitioners. Animals: an open access j. from M DPI, 9(4), 133. doi: 10.3390/ani9040133
  • 143. Xie, Y., Li, H., Chen, F., Udayakumar, S., Arora, K., Chen, H., Lan, Y., Hu, Q., Zhou, X., Guo, X., Xiu, L., & Yin, K. (2022). Clustered Regularly Interspaced short palindromic repeats-Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives. Advanced science (Weinheim, BadenWurttemberg, Germany), 9(34), e2204172. doi: 10.1002/advs.202204172
  • 144. Kostyusheva, A., Brezgin, S., Babin, Y., Vasilyeva, I., Glebe, D., Kostyushev, D., & Chulanov, V. (2022). CRISPR-Cas systems for diagnosing infectious diseases. Methods (San Diego, Calif.), 203, 431-446. doi: 10.1016/j.ymeth.2021.04.007
  • 145. Zhang, D., Jiang, S., Xia, N., Zhang, Y., Zhang, J., Liu, A., Zhang, C., Chen, N., Meurens, F., Zheng, W., & Zhu, J. (2023). Rapid Visual Detection of African Swine Fever Virus with a CRISPR/Cas12a Lateral Flow Strip Based on Structural Protein Gene D117L. Animals: an open access j. from MDPI, 13(23), 3712. doi: 10.3390/ani13233712
  • 146. Zheng, Z., Xu, L., Gao, Y., Dou, H., Zhou, Y., Feng, X., He, X., Tian, Z., Song, L., Mo, G., Hu, J., Zhao, H., Wei, H., Church, G. M., & Yang, L. (2024). Testing multiplexed anti-ASFV CRISPR-Cas9 in reducing African swine fever virus. M icrobiology Spectrum, 12(7), e0216423. doi: 10.1128/spectrum.02164-23
  • 147. Chang, Y., Deng, Y., Li, T., Wang, J., Wang, T., Tan, F., Li, X., & Tian, K. (2020). Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a. Transboundary and Emerging Diseases, 67(2), 564-571. doi: 10.1111/tbed.13368
  • 148. Liu, Y., Zhang, X., Qi, W., Yang, Y., Liu, Z., An, T., Wu, X., & Chen, J. (2021). Prevention and Control Strategies of African Swine Fever and Progress on Pig Farm Repopulation in China. Viruses, 13(12), 2552. doi: 10.3390/v13122552
  • 149. Huang, T., Zhang, R., & Li, J. (2023). CRISPR-Cas-based techniques for pathogen detection: Retrospect, recent advances, and future perspectives. J. o f Advanced Research, 50, 69-82. doi: 10.1016/j.jare.2022.10.011
  • 150. Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2023). Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J. o f Ambient Intelligence and Humanized Computing, 14(7), 8459-8486. doi: 10.1007/s12652-021-03612-z
  • 151. Akinsulie, O. C., Idris, I., Aliyu, V. A., Shahzad, S., Banwo, O. G., Ogunleye, S. C., Olorunshola, M., Okedoyin, D. O., Ugwu, C., Oladapo, I. P., Gbadegoye, J. O., Akande, Q. A., Babawale, P., Rostami, S., & Soetan, K. O. (2024). The potential application of artificial intelligence in veterinary clinical practice and biomedical research. Frontiers in Vet. Sci., 11, 1347550. doi: 10.3389/fvets.2024.1347550
  • 152. Lepakshi V. A. (2022). Machine Learning and Deep Learning based AI Tools for Development of Diagnostic Tools. Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection, 399-420. doi: 10.1016/B978-0-323-91172-6.00011-X
  • 153. Shafi, S., & Parwani, A. V. (2023). Artificial intelligence in diagnostic pathology. Diagnostic Pathology, 18(1), 109. doi: 10.1186/s13000-023-01375-z
  • 154. Detmer, S., Gramer, M., Goyal, S., Torremorell, M., & Torrison, J. (2013). Diagnostics and surveillance for Swine influenza. Current Topics in Microbiology and Immunology, 370, 85-112. doi: 10.1007/82_2012_220
  • 155. Teles, F., & Fonseca, L. (2015). Nucleic-acid testing, new platforms and nanotechnology for point-of-decision diagnosis of animal pathogens. Methods in Molecular Biology (Clifton, N. J..), 1247, 253-283. doi: 10.1007/978-1-4939-2004-4_20
  • 156. Fackler, J. L., & McGuire, A. L. (2009). Paving the Way to Personalized Genomic Medicine: Steps to Successful Implementation. Current Pharmacogenomics and Personalized Med., 7(2), 125. doi: 10.2174/187569209788653998
  • 157. Zhao, S., Zhu, M., & Chen, H. (2012). Immunogenomics for identification of disease resistance genes in pigs: a review focusing on Gram-negative bacilli. J. o f Animal Sci. and Biotechnology, 3(1), 34. doi: 10.1186/2049-1891-3-34
  • 158. Giles, T. A., Belkhiri, A., Barrow, P. A., & Foster, N. (2017). Molecular approaches to the diagnosis and monitoring of production diseases in pigs. Research in Vet. Sci., 114, 266-272. doi: 10.1016/j.rvsc.2017.05.016
  • 159. Poland, G. A., Ovsyannikova, I. G., & Jacobson, R. M. (2008).
  • Personalized vaccines: the emerging field of vaccinomics. Expert opinion on biological therapy, 8(11), 1659-1667. doi: 10.1517/14712598.8.11.1659
  • 160. Alghamdi S. (2021). The role of vaccines in combating antimicrobial resistance (AMR) bacteria. Saudi J. o f Biological Sci., 28(12), 7505-7510. doi: 10.1016/j.sjbs.2021.08.054